Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
NX: x = 0 là 1 nghiệm của pt
Nếu \(x\ne0\)
\(ĐKXĐ:x\ge3\)
Ta có : \(\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
\(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}-\sqrt{x\left(x-3\right)}=0\)(1)
Vì mỗi ngoặc trong căn đều dương nên ta tách ra được
\(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\sqrt{x}=0\left(h\right)\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)
*Nếu \(\sqrt{x}=0\)
\(\Rightarrow x=0\)(loại vì ko thỏa mãn ĐKXĐ)
*Nếu \(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt{x+2}+\sqrt{x-2}\)
Dễ thấy VT < VP
=> pt vô nghiệm
Vậy pt có 1 nghiệm duy nhất x = 0
Bổ sung chỗ ĐKXĐ nhé !
\(ĐKXĐ:\orbr{\begin{cases}x\ge3\\x\le-2\end{cases}}\)
Còn phần tiếp theo làm tương tự !
a) ĐKXD:...
\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)
Đến đây dễ rồi