K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Lời giải:

ĐKXĐ: ...............

PT \(\Leftrightarrow \frac{(\sin x-\cos x)(\sin ^2x+\sin x\cos x+\cos ^2x)}{\sqrt{\sin x}+\sqrt{\cos x}}=-2(\sin x-\cos x)(\sin x+\cos x)\)

\(\Leftrightarrow (\sin x-\cos x)\left[\frac{\sin ^2x+\sin x\cos x+\cos ^2x}{\sqrt{\sin x}+\sqrt{\cos x}}+2(\sin x+\cos x)\right]=0\)

Dễ thấy với $\sin x, \cos x\geq 0$ thì biểu thức trong ngoặc vuông luôn lớn hơn $0$

Do đó:

$\sin x-\cos x=0$

$\Leftrightarrow \sin x=\cos x$

Mà $\sin ^2x+\cos ^2x=1; \sin x, \cos x\geq 0$ nên $\sin x=\cos x=\frac{1}{\sqrt{2}}$

$\Rightarrow x=k\pi -\frac{7}{4}\pi$ với $k$ nguyên.

7 tháng 4 2020

a) Ta có : \(sin\left(x-\frac{2\pi}{3}\right)=cos2x\)

\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2\pi}{3}=\frac{\pi}{2}-2x+k2\pi\\x-\frac{2\pi}{3}=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{18}+k\frac{2\pi}{3}\\x=-\frac{7\pi}{6}-k2\pi\end{matrix}\right.\)

Vậy ...

8 tháng 4 2020

(^ - ^)

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

NV
19 tháng 9 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}3x=90^0-x+k360^0\\3x=90^0+x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{45^0}{2}+k90^0\\x=45^0+k180^0\end{matrix}\right.\)

b.

\(\Leftrightarrow cos\left(3x+45^0\right)=cos\left(x-180^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+45^0=x-180^0+k360^0\\3x+45^0=180^0-x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{225^0}{2}+k180^0\\x=\frac{135^0}{4}+k90^0\end{matrix}\right.\)

c.

\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=-x+k2\pi\\2x+\frac{\pi}{3}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
19 tháng 9 2020

d.

\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=cos2x\)

\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2\pi}{3}=\frac{\pi}{2}-x+k2\pi\\x-\frac{2\pi}{3}=2x+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{12}+k\pi\\x=-\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

e.

\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=sin\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=cos\left(\frac{\pi}{6}-2x\right)\)

\(\Leftrightarrow2x-\frac{\pi}{4}=\frac{\pi}{6}-2x+k2\pi\)

\(\Leftrightarrow x=\frac{5\pi}{48}+\frac{k\pi}{2}\)

NV
27 tháng 8 2020

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

NV
27 tháng 8 2020

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)