K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

a) \(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\Rightarrow x\left(x-3\right)\left(x+2\right)\left(x+5\right)=216\)

\(\Rightarrow x\left(x+2\right)\left(x-3\right)\left(x+5\right)=216\Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)=216\)

Đặt \(t=x^2+2x\Rightarrow\) pt trở thành \(t\left(t-15\right)=216\Rightarrow t^2-15t-216=0\)

\(\Rightarrow\left(t+9\right)\left(t-24\right)=0\Rightarrow\left[{}\begin{matrix}t=-9\\t=24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+2x=-9\\x^2+2x=24\end{matrix}\right.\)

\(TH_1:x^2+2x=-9\Rightarrow x^2+2x+9=0\Rightarrow\left(x+1\right)^2+8=0\) (vô lý)

\(TH_2:x^2+2x=24\Rightarrow x^2+2x-24=0\Rightarrow\left(x-4\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)

b) \(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x-1\right)\left(x-1\right)\left(2x+3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x+3\right)\left(x-1\right)\left(2x-1\right)+9=0\)

\(\Rightarrow\left(2x^2-3x-9\right)\left(2x^2-3x+1\right)+9=0\)

Đặt \(t=2x^2-3x-9\Rightarrow\) pt trở thành \(t\left(t+10\right)+9=0\)

\(\Rightarrow t^2+10t+9=0\Rightarrow\left(t+1\right)\left(t+9\right)=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-9\end{matrix}\right.\)

\(TH_1:t=-1\Rightarrow2x^2-3x-9=-1\Rightarrow2x^2-3x-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right).2=73\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{73}}{4}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{73}}{4}\end{matrix}\right.\)

\(TH_2:t=-9\Rightarrow2x^2-3x-9=-9\Rightarrow2x^2-3x=0\Rightarrow x\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

 

NV
2 tháng 3 2020

a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)

b. \(\Leftrightarrow x^3+x+3x^2+3=0\)

\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)

c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)

NV
2 tháng 3 2020

d.

\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)

e.

\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)

\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)

16 tháng 8 2019

a) \(\left(4x^2-25\right)\left(2x^2-7x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-25=0\left(1\right)\\2x^2-7x-9=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2=\frac{25}{4}\Leftrightarrow x=\pm\frac{5}{2}\)

\(\left(2\right)\Leftrightarrow2x^2-9x+2x-9=0\)

\(\Leftrightarrow2x\left(x+1\right)-9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{9}{2}\end{matrix}\right.\)

Vậy....

b) \(\left(2x^2-3\right)^2-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-3\right)^2-\left(2x-2\right)^2=0\)

\(\Leftrightarrow\left(2x^2-3-2x+2\right)\left(2x^2-3+2x-2\right)=0\)

\(\Leftrightarrow\left(2x^2-2x-1\right)\left(2x^2+2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x-1=0\left(3\right)\\2x^2+2x-5=0\left(4\right)\end{matrix}\right.\)

\(\left(3\right)\Delta=2^2-4\cdot2\cdot\left(-1\right)=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2-\sqrt{12}}{4}=\frac{1-\sqrt{3}}{2}\\x=\frac{2+\sqrt{12}}{4}=\frac{1+\sqrt{3}}{2}\end{matrix}\right.\)

\(\left(4\right)\Delta=2^2-4\cdot2\cdot\left(-5\right)=44\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2-\sqrt{44}}{4}=\frac{-1-\sqrt{11}}{2}\\x=\frac{-2+\sqrt{44}}{4}=\frac{-1+\sqrt{11}}{2}\end{matrix}\right.\)

Vậy...

16 tháng 8 2019

c) \(x^3+5x^2+7x+3=0\)

\(\Leftrightarrow x^3+3x^2+2x^2+6x+x+3=0\)

\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

Vậy...

d) \(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow x^3-2x^2-4x^2+8x+3x-6=0\)

\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=3\end{matrix}\right.\)

Vậy...

a, \(x^2-49x-50=0\Leftrightarrow\left(x-1\right)\left(x+50\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-50\end{cases}}\)

b, \(3x^2-7x-10=0\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\Leftrightarrow\left(3x-10\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=10\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}}\)

c, \(x^2-4x-5=0\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

d, \(x^2+2x-3=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

e, \(x^2+2020x-2021=0\)

=> vô nghiệm 

f, \(x^2+9x-10=0\Leftrightarrow\left(x-1\right)\left(x+10\right)\Leftrightarrow\orbr{\begin{cases}x=1\\x=-10\end{cases}}\)

g, \(-5x^2+4x+1=0\Leftrightarrow5x^2+x-5x-1=0\Leftrightarrow x\left(5x+1\right)-1\left(5x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)

h, \(4x^2+3x-7=0\Leftrightarrow x\left(4x+7\right)-1\left(4x+7\right)=0\Leftrightarrow\left(x-1\right)\left(4x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{7}{4}\end{cases}}\)

21 tháng 4 2020

a) (x-50)(x+1)=0

<=>x=50 hoặc x=1

b) (x+1)(x-10/3)=0

<=>x=-1 hoặc x=10/3

c)  (x-5)(x+1)=0

<=>x=5 hoặc x=-1

d)  (x+3)(x-1)=0

<=>x=-3 hoặc x=1

e) (x-1)(x+2021)=0

<=>x=1 hoặc x=-2021

f) (x-1)(x+10)=0

<=> x=1 hoặc x=-10

g) (x+1/5)(x-1)=0

<=>x=1 hoặc x=-1/5

h) (x-1)(x+7/4)=0

<=> x=1 hoặc x=-7/4

Học tốt. tk vs ạ

13 tháng 5 2020

cu dương to không

13 tháng 4 2017

Câu c;d giải \(\Delta\)

Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự

a/ \(x^4-2x^2-8=0\left(1\right)\)

Đặt: \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Rightarrow t^2-2t-8=0\)

( a = 1; b = -2; c = -8 )

\(\Delta=b^2-4ac\) 

   \(=\left(-2\right)^2-4.1.\left(-8\right)\)

   \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)

\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)

Vậy: S = {-2;2}

25 tháng 10 2015

a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2 

=> 5x^2 = 5 hoặc 5x^2 = 1 

b) pt <=> l(x-1)^2l = x + 2 

VÌ ( x - 1 )^2 >=  0  => l( x - 1 )^2 l = ( x- 1 )^2 

pt <=> x^2 - 2x + 1 = x + 2 <=>

 x^2 - 3x - 1 = 0 

c) l2x-5l - l2x^2 - 7x + 5 l =  0 

<=> l2x-5l - l ( 2x-5)(x-1) l = 0 

<=> l2x-5l ( 1 - l x - 1 l = 0 

<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0 

d); e lập bảng xét dấu sau đó xét ba trường hợ p ra 

NV
18 tháng 10 2020

a/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-4=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

Pt trở thành:

\(2\left(t^2+2\right)-3t-4=0\Leftrightarrow2t^2-3t=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{x}=0\\x-\frac{1}{x}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\2x^2-3x-2=0\end{matrix}\right.\) (bấm máy)

NV
18 tháng 10 2020

b/

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)-3=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)-3=0\)

Đặt \(x^2-5x+4=t\)

Pt trở thành:

\(t\left(t+2\right)-3=0\)

\(\Leftrightarrow t^2+2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+4=1\\x^2-5x+4=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+3=0\\x^2-5x+7=0\end{matrix}\right.\) (bấm máy)