K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

b)  \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\)  (1)

Đặt  \(a=x+1;b=3x^2+x\)  thì

\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)

\(\Leftrightarrow4a^2-7ab-2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)

Đến đây thì dễ rồi

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

12 tháng 2 2020

Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)

Phương trình trở thành \(u+v+2uv=17\)

\(\Rightarrow u+v=\sqrt{17}\)

đến đây thì EZ rồi

NV
9 tháng 6 2019

Do \(x=0\) không phải nghiệm

\(x^2+3x+1=0\Leftrightarrow x+3+\frac{1}{x}=0\Leftrightarrow x+\frac{1}{x}=-3\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Rightarrow x^2+\frac{1}{x^2}=7\)

Đặt \(x_n=x^n+\frac{1}{x^n}\Rightarrow x_1=-3;x_2=7\)

\(x_1x_n=\left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)=x^{n+1}+\frac{1}{x^{n+1}}+x^{n-1}+\frac{1}{x^{n-1}}=x_{n+1}+x_{n-1}\)

\(\Rightarrow x_{n+1}=x_1x_n-x_{n-1}=-3x_n-x_{n-1}\)

Cho \(n=2\Rightarrow x_3=x^3+\frac{1}{x^3}=-3.x_2-x_1=-18\)

\(n=3\Rightarrow x_4=x^4+\frac{1}{x^4}=-3x_3-x_2=47\)

\(n=4\Rightarrow x_5=x^5+\frac{1}{x^5}=-3x_4-x_3=-123\)

\(n=5\Rightarrow x_6=x^6+\frac{1}{x^6}=-3x_5-x_4=322\)

Thay vào và tính, kết quả rất to

6 tháng 8 2019

\(\frac{x^2}{\left(x+2\right)}=3x^2-6x-3,x\ne-2\)

\(\Rightarrow x^2=\left(3x^2-6x-3\right)\left(x+2\right)^2\)

\(\Rightarrow x^2-\left(3x^2-6x-3\right)\left(x+2\right)^2=0\)

\(\Rightarrow x^2-\left(3x^4+12x^3+12x^2-6x^3-24x^2-24x-3x^2-12x-12\right)=0\)

\(\Rightarrow x^2-\left(3x^4+6x^3-15x^2-36x-12\right)=0\)

\(\Rightarrow16x^2-3x^4-6x^3+36x+12=0\)

\(\Rightarrow-2x^2+18x^2-3x^4-6x^3+36x+12=0\)

\(\Rightarrow-x^2\left(3x^2+6x+2\right)+\left(3x^2+6x+2\right)=0\)

\(\Rightarrow-\left(3x^2+6x+2\right)\left(x^2-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-\left(3x^2+6x=2\right)=0\\x^2-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{-3+\sqrt{3}}{3}\\\frac{-3-\sqrt{3}}{3},x\ne-2\\x=-\sqrt{6}\\x=\sqrt{6}\end{matrix}\right.\)

12 tháng 5 2018

a,-0,162