Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
\(\left\{{}\begin{matrix}x+y+xy=-1\left(1\right)\\x^2+y^2-xy=7\end{matrix}\right.\)\(\Rightarrow x^2+y^2+x+y=6\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+x+y=6\)
\(\Leftrightarrow xy=\frac{\left(x+y\right)^2+x+y-6}{2}\)
Thay vào (1):\(2x+2y+\left(x+y\right)^2+x+y-6=-2\)
\(\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}xy=-2\\xy=3\end{matrix}\right.\)
Vậy x,y là nghiệm của pt:\(\left[{}\begin{matrix}X^2-X-2=0\\X^2+4X+3=0\end{matrix}\right.\)
Đến đây tự tìm x,y.
Điều kiện xác định: \(x\ne-1;y\ne1\)
\(\hept{\begin{cases}\frac{x^2}{x+1}+\frac{y^2}{y-1}=4\left(1\right)\\\frac{x+2}{x+1}+\frac{y-2}{y-1}=y-x\left(2\right)\end{cases}}\)
Từ pt (2), ta có: \(\frac{x+2}{x+1}+\frac{y-2}{y-1}=y-x\)
\(\Leftrightarrow1+\frac{1}{x+1}+1-\frac{1}{y-1}-y+x=0\)
\(\Leftrightarrow x+1+\frac{1}{x+1}-\left(y-1+\frac{1}{y-1}\right)=0\)
\(\Leftrightarrow x+1+\frac{1}{x+1}=y-1+\frac{1}{y-1}\)
\(\Leftrightarrow\frac{x^2+2x+2}{x+1}=\frac{y^2-2y+2}{y-1}\)
\(\Leftrightarrow\frac{x^2}{x+1}+\frac{2\left(x+1\right)}{x+1}=\frac{y^2}{y+1}-\frac{2\left(y-1\right)}{y-1}\)
\(\Leftrightarrow\frac{x^2}{x+1}+2=\frac{y^2}{y-1}-2\)
\(\Leftrightarrow\frac{x^2}{x+1}+4-\frac{y^2}{y-1}=0\)(*)
Thay (1) vào (*), ta được: \(\frac{x^2}{x+1}+\frac{x^2}{x+1}+\frac{y^2}{y-1}-\frac{y^2}{y-1}=0\)
\(\Leftrightarrow\frac{2x^2}{x+1}=0\)
\(\Leftrightarrow2x^2=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
Thay x = 0 vào pt (1), ta được: \(\frac{y^2}{y-1}=4\) \(\Leftrightarrow\left(y-2\right)^2=0\) \(\Leftrightarrow y=2\left(tm\right)\)
Vậy: Hệ có nghiệm duy nhất thỏa mãn: \(\left(0;2\right)\)
=.= hk tốt!!