Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
\(\Rightarrow x=-\frac{1}{4}\) hoặc \(x=\frac{1}{2}\)
bài 2 :
\(\Leftrightarrow\left(2x+1\right)\left(3x+2\right)\left(12x+7\right)^2-3=\left(3x+1\right)\left(6x+5\right)\left(48x^2+56x+19\right)\)
\(\Rightarrow3x+1=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow6x+5=0\)
\(\Rightarrow6x=-5\)
Áp dụng Delta ta có :
\(\Rightarrow48x^2+56x+19=0\)
\(\Rightarrow56^2-4\left(48.19\right)=-512\)
=>D<0 ko có nghiệm thực ( ko có hình tam giác nên thay tạm )
\(\Rightarrow x=-\frac{5}{6}\) hoặc \(x=-\frac{1}{3}\)
tôi nhớ có 1 lần tôi làm mà ông ko tik nhé
a/ 2x(8x - 1)2(4x - 1) = 9
=> (64x2 - 16x + 1) (8x2 - 2x) = 9
- Nhân 2 vế cho 8 ta đc:
(64x2 - 16x + 1) (64x2 - 16x) = 72
- Đặt a = 64x2 - 16x ta đc:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a - 8)(a + 9) = 0
=> a = 8 hoặc a = -9
- Với a = 8 => 64x2 - 16x = 8 => 64x2 - 16x - 8 = 0 => (2x - 1)(4x + 1) = 0 => x = 1/2 hoặc x = -1/4
- Với a = -9 => 64x2 - 16x = -9 => 64x2 - 16x + 9 = 0 , mà 64x2 - 16x + 9 > 0 => pt vô nghiệm
Vậy x = 1/2 , x = -1/4
A, 2x-7=5x+20
<=>3x=-27
<=>x=-9
B, x^3-4x=0
<=>x(x2-4)=0
<=>x(x-2)(x+2)=0
<=>x=0, 2,-2
C,
a) 3x + 18 = 0
<=> 3*(x+6)=0
<=> x+6=0
<=> x=-6
Vậy S={-6}
6x-7=3x+2
<=> 6x - 3x= 2+7
<=> 3x=9
<=> x=3
Vậy S={ 3}
c) mk ko hỉu rõ đề
Đây là giải bất phương trình nhé bạn
a) Ta có: \(3\left(1-2x\right)< 4\left(5-\frac{3x}{2}\right)\)
\(\Leftrightarrow3-6x< 20-6x\)
\(\Leftrightarrow3-6x-20+6x< 0\)
hay -17<0(vô lý)
Vậy: \(S=\varnothing\)
b) Ta có: \(4-\left(x-3\right)^2-\left(2x-1\right)^2>12x\)
\(\Leftrightarrow4-\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x>0\)
\(\Leftrightarrow4-x^2+6x-9-4x^2+4x-1-12x>0\)
\(\Leftrightarrow-5x^2-2x-6>0\)
\(\Leftrightarrow-5\left(x^2+\frac{2}{5}x+\frac{6}{5}\right)>0\)
\(\Leftrightarrow x^2+\frac{2}{5}x+\frac{6}{5}< 0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{2}{10}+\frac{4}{100}+\frac{29}{25}< 0\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2+\frac{29}{25}< 0\)(vô lý)
Vậy: \(S=\varnothing\)
Lời giải:
Tập xác định của phương trình
Biến đổi vế trái của phương trình
Phương trình thu được sau khi biến đổi
\(\Leftrightarrow\left(144x^2+168x+49\right)\left(6x^2+7x+2\right)=3\)
Đặt \(6x^2+7x+2=t\Rightarrow6x^2+7x=t-2\)
\(\Rightarrow144x^2+168x+49=24\left(6x^2+7x\right)+49=24\left(t-2\right)+49=24t+1\)
Phương trình trở thành:
\(\left(24t+1\right)t=3\Leftrightarrow24t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{1}{3}\\t=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x^2+7x+2=\dfrac{1}{3}\\6x^2+7x+2=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x^2+7x+\dfrac{5}{3}=0\\6x^2+7x+\dfrac{19}{8}=0\end{matrix}\right.\) (bấm máy)
\(x^4-2x^3+3x^2-2x+1=0\)
Chia cả hai vé cho \(x^2\)
\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)
\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt x+1/x = a, ta có:
\(a^2-2a+1=0\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2+1=x\)
\(\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)
Do đó phương trình vô nghiệm