K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PT <=> \(\left(y^4-y^3\right)+\left(y^3-y^2\right)+\left(7y^2-7y\right)+\left(7y-7\right)=0\)

<=> \(y^3\left(y-1\right)+y^2\left(y-1\right)+7y\left(y-1\right)+7\left(y-1\right)=0\)

<=> \(\left(y-1\right)\left(y^3+y^2+7y+7\right)=0\)

<=> \(\left(y-1\right)\left[y^2\left(y+1\right)+7\left(y+1\right)\right]=0\)

<=> \(\left(y-1\right)\left(y+1\right)\left(y^2+7\right)=0\)

<=> \(\left[{}\begin{matrix}y-1=0=>y=1\\y+1=>y=-1\\y^2+7=0=>y\in\varnothing\end{matrix}\right.\)

KL: ...

7 tháng 5 2020
https://i.imgur.com/7l2CMcE.jpg
2 tháng 2 2019

\(2x^4+5x^2-7=0\left(1\right)\)

Đặt \(t=x^2\left(t\ge0\right)\)

\(\left(1\right):2t^2+5t-7=0\\ \Leftrightarrow2t^2+7t-2t-7=0\\ \Leftrightarrow t\left(2t+7\right)-\left(2t+7\right)=0\\ \Leftrightarrow\left(2t+7\right)\left(t-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2t+7=0\\t-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{7}{2}\left(KTM\right)\\t=1\left(TM\right)\end{matrix}\right.\)

Với \(t=1\Leftrightarrow x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy nghiệm phương trình là \(S=\left\{1;-1\right\}\)

11 tháng 3 2018

\(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^2-2.3x.7+7^2-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-50x+45=0\)

\(\Leftrightarrow x^2-10x+9=0\)

\(\Leftrightarrow x^2-x-9x+9=0\)

\(\Leftrightarrow x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy................

12 tháng 3 2018

Ta có: \(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(3x-7\right)^2-\left(2x+2\right)^2=0\)

\(\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\)

\(\Leftrightarrow5\left(x-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;9\right\}\)

26 tháng 10 2020

Bài 1

1) 4x - x2 - 4 = 0

⇔ -( x2 - 4x + 4 ) = 0

⇔ -( x - 2 )2 = 0

⇔ x - 2 = 0

⇔ x = 2

2) 4( x - 1 )2 - ( 5 - 2x )2 = 0

⇔ 22( x - 1 )2 - ( 5 - 2x )2 = 0

⇔ ( 2x - 2 )2 - ( 5 - 2x ) = 0

⇔ ( 2x - 2 - 5 + 2x )( 2x - 2 + 5 - 2x ) = 0

⇔ ( 4x - 7 ).3 = 0

⇔ 4x - 7 = 0

⇔ x = 7/4

3) 9( x - 2 )2 - 4( 3 - x )= 0

⇔ 32( x - 2 )2 - 22( x - 3 )2 = 0

⇔ ( 3x - 6 )2 - ( 2x - 6 )2 = 0

⇔ ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 ) = 0

⇔ x( 5x - 12 ) = 0

⇔ x = 0 hoặc 5x - 12 = 0

⇔ x = 0 hoặc x = 12/5

4) x2 - 6x + 5 = 0

⇔ x2 - 5x - x + 5 = 0

⇔ x( x - 5 ) - ( x - 5 ) = 0

⇔ ( x - 5 )( x - 1 ) = 0

⇔ x - 5 = 0 hoặc x - 1 = 0

⇔ x = 5 hoặc x = 1

26 tháng 10 2020

Bài 2.

1) x2 - z2 + y2 - 2xy

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - z2

= ( x - y - z )( x - y + z )

2) a3 - ay - a2x + xy

= ( a3 - a2x ) - ( ay - xy )

= a2( a - x ) - y( a - x )

= ( a - x )( a2 - y )

3) 2xy + 3z + 6y + xz

= ( 2xy + 6y ) + ( xz + 3z )

= 2y( x + 3 ) + z( x + 3 )

= ( x + 3 )( 2y + z )

4) x2 + 2xz + 2xy + 4yz

= ( x2 + 2xy ) + ( 2xz + 4yz )

= x( x + 2y ) + 2z( x + 2y )

= ( x + 2y )( x + 2z )

5) ( x + y + z )3 - x3 - y3 - z3

= x3 + y3 + z3 + 3( x + y )( y + z )( x + z ) - x3 - y3 - z3

= 3( x + y )( y + z )( x + z )

23 tháng 8 2020

?????

Ta có : 9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0 

<=> 9x2 - 18x + 9 + y2 - 6y + 9 + 2z2 + 4z + 2 = 0 

<=> 9(x2 - 2x + 1) + (y2 - 6y + 9) + 2(z2 + 2z + 1) = 0 

<=> 9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = 0 (*)

Vì \(9\left(x-1\right)^2\ge0\forall x\in R\)

    \(\left(y-3\right)^2\ge0\forall y\in R\)

     \(2\left(z+1\right)^2\ge0\forall z\in R\)

Nên : pt (*) <=> \(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

Vậy pt có nhiệm (x;y;z) = (1;3;-1)

13 tháng 4 2018

k mik , mik chỉ cko 

a) \(x^4+2x^3-12x^2-13x+42=0\)

\(\Leftrightarrow x^4+3x^3-x^3-3x^2-9x^2-27x+14x+42=0\)

\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)-9x\left(x+3\right)+14\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-9x+14\right)=0\)

8 tháng 4 2018

\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x^2+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

Ta có:

\(x^2+x+6=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy...........

18 tháng 7 2018

a) (x+y+4)(x+y-4) = (x+y)2 - 42

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk tốt