Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Lần sau đừng tự tiện xếp vào phần bất pt bạn nhé :(
Ta có : \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)=3x^2\)
\(\Leftrightarrow4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)=3x^2\)
\(\Leftrightarrow4\left(x^2+17x+60\right)\left(x^2+16x+60\right)=3x^2\)(1)
Đặt \(x^2+16x+60=a\)
Pt (1) \(\Leftrightarrow4\left(a+x\right)a=3x^2\)
\(\Leftrightarrow4\left(a^2+ax\right)=3x^2\)
\(\Leftrightarrow4a^2+4ax=3x^2\)
\(\Leftrightarrow4a^2+4ax+x^2=4x^2\)
\(\Leftrightarrow\left(2a+x\right)^2=4x^2\)
\(\Leftrightarrow\orbr{\begin{cases}2a+x=2x\\2a+x=-2x\end{cases}}\)
*Nếu \(2a+x=2x\)
\(\Leftrightarrow2a=x\)
\(\Leftrightarrow x^2+16x+60=x\)
\(\Leftrightarrow x^2+15x+60=0\)
\(\Leftrightarrow x^2+2.\frac{15}{2}.x+\frac{225}{4}+\frac{15}{4}=0\)
\(\Leftrightarrow\left(x+\frac{15}{2}\right)^2+\frac{15}{4}=0\)
Pt vô nghiệm
*Nếu \(2a+x=-2x\)
\(\Leftrightarrow2a+3x=0\)
\(\Leftrightarrow2\left(x^2-16x+60\right)+3x=0\)
\(\Leftrightarrow2x^2-32x+120+3x=0\)
\(\Leftrightarrow2x^2-29x+120=0\)
\(\Leftrightarrow x^2-\frac{29}{2}x+60=0\)
\(\Leftrightarrow x^2-2.\frac{29}{4}.x+\frac{841}{16}+\frac{119}{16}=0\)
\(\Leftrightarrow\left(x-\frac{29}{4}\right)^2+\frac{119}{16}=0\)
Pt vô nghiệm
Vậy pt vô nghiệm
cả 2 pt đều giải theo kiểu cái đầu nhóm với cái cuối, 2 cái ở giữa nhóm với nhau. sau đó giải theo cách đặt ẩn phụ
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)
\(\Leftrightarrow\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
Đặt \(x^2+7x=a\), nên ta có :
\(\left(a+10\right)\left(a+12\right)-24=0\)
\(\Leftrightarrow\left(x+11-1\right)\left(x+11+1\right)-24=0\)
\(\Leftrightarrow\left[\left(x+11\right)^2-1\right]-24=0\)
\(\Leftrightarrow\left(x+11\right)^2-25=0\)
\(\Leftrightarrow\left(x+11-5\right)\left(x+11+5\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x+16\right)=0\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-16\end{cases}}\)
M.n giúp mk giải bài này ms:
Giải pt: \(\left(x^2-5x+1\right)\left(x^2-4\right)=6\left(x-1\right)^2\)
PT đã cho \(\Leftrightarrow\left(x^2-4-5x+5\right)\left(x^2-4\right)=6\left(x-1\right)^{2
}\)
\(\Leftrightarrow\left(x^2-4-5\left(x-1\right)\right)\left(x^2-4\right)=6\left(x-1\right)^2\)(*)
ĐẶt \(x^2-4=a.\)\(x-1=b\)
PT(*) có dạng \(\left(a-5b\right)a=6b^2\Leftrightarrow a^2-5ab-6b^2=0\Leftrightarrow\left(a+b\right)\left(a-6b\right)=0\)
\(\cdot a+b=0\Leftrightarrow x^2-4+x-1=0\Leftrightarrow x^2+x-5=0\)
\(\Rightarrow x_1=\frac{-1+\sqrt{21}}{2}.x_2=\frac{-1-\sqrt{21}}{2}\)
\(.a-6b=0\Leftrightarrow x^2-4-6\left(x-1\right)=0\Leftrightarrow x^2-6x+2=0\)
\(\Rightarrow x_3=3+\sqrt{7}.x_4=3-\sqrt{7}\)
THử lại: các nghiệm trên đều thỏa mãn pt
Vậy :....
p/s : học khuya thế ==ơ
Đặt t = x - 3, pt trở thành :
(t + 1)6 + (t - 1)6 = 64
Khai triển và rút gọn, ta được :
2t6 + 30t4 + 30t2 + 2 = 64 => 2(t - 1)(t + 1)(t4 + 16t2 + 31) = 0
=> \(t=\pm1\) (do t4 + 16t2 + 31 ≠ 0)
Vậy...