\(x^2-5|x|-6=0\)

b)\(\dfrac{x}{x-2}+\dfra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left(\left|x\right|\right)^2-5\left|x\right|-6=0\)

\(\Leftrightarrow\left(\left|x\right|-6\right)\left(\left|x\right|+1\right)=0\)

\(\Leftrightarrow\left|x\right|-6=0\)

=>x=6 hoặc x=-6

b: \(\dfrac{x}{x-2}+\dfrac{5}{\left|x+2\right|}=1\)

Trường hợp 1: x>-2 và x<>2

Pt sẽ là \(\dfrac{x}{x-2}+\dfrac{5}{x+2}=1\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)+5\left(x-2\right)\)

\(\Leftrightarrow x^2+2x+5x-10=x^2-4\)

=>7x=6

hay x=6/7(nhận)

TRường hợp 2: x<-2

Pt sẽ là \(\dfrac{x}{x-2}-\dfrac{5}{x+2}=1\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)-5\left(x-2\right)\)

\(\Leftrightarrow x^2+2x-5x+10=x^2-4\)

=>-3x=-14

hay x=14/3(loại)

27 tháng 2 2019

a) \(\dfrac{15-x}{2000}+\dfrac{14-x}{2001}=\dfrac{13-x}{2002}+\dfrac{12-x}{2003}\)

\(\Leftrightarrow\dfrac{15-x}{2000}+1+\dfrac{14-x}{2001}+1=\dfrac{13-x}{2002}+1+\dfrac{12-x}{2003}+1\)

\(\Leftrightarrow\dfrac{2015-x}{2000}+\dfrac{2015-x}{2001}=\dfrac{2015-x}{2002}+\dfrac{2015-x}{2003}\)

\(\Rightarrow\dfrac{2015-x}{2000}+\dfrac{2015-x}{2001}-\dfrac{2015-x}{2002}-\dfrac{2015-x}{2003}=0\)

\(\Leftrightarrow\left(2015-x\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2015-x=0\)

<=> x=2015

Vậy phương trình có nghiệm là x=2015

27 tháng 2 2019

b) \(\dfrac{x-5}{2010}+\dfrac{x-4}{2011}=\dfrac{x-2010}{5}+\dfrac{x-2011}{4}\)

\(\Leftrightarrow\dfrac{x-5}{2010}-1+\dfrac{x-4}{2011}-1=\dfrac{x-2010}{5}-1+\dfrac{x-2011}{4}-1\)

\(\Leftrightarrow\dfrac{x-2015}{2010}+\dfrac{x-2015}{2011}=\dfrac{x-2015}{5}+\dfrac{x-2015}{4}\)

\(\Rightarrow\dfrac{x-2015}{2010}+\dfrac{x-2015}{2011}-\dfrac{x-2015}{5}-\dfrac{x-2015}{4}=0\)

\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{5}-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x-2015=0\)

=> x=2015

Vậy phương trình có nghiệm x=2015

19 tháng 3 2018

1)\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|+3=5\\\left|x-2\right|+3=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=2\\\left|x-2\right|=-8\left(loai\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

23 tháng 12 2018

\(a.\dfrac{3x-2}{5}+\dfrac{x-1}{9}=\dfrac{14x-3}{15}-\dfrac{2x+1}{9}\\ \Leftrightarrow\dfrac{27x-18}{45}+\dfrac{5x-5}{45}=\dfrac{42x-9}{45}-\dfrac{10x+5}{45}\\ \Rightarrow27x-18+5x-5=42x-9-10x-5\\ \Leftrightarrow32x-23=32x-14\\ \Leftrightarrow0x=9\\ \Rightarrow Phươngtrìnhvônghiệm\\ \Rightarrow S=\phi\)

\(b.\dfrac{x+3}{2}-\dfrac{2-x}{3}-1=\dfrac{x+5}{6}\\ \Leftrightarrow\dfrac{3x-9}{6}-\dfrac{4-2x}{6}-\dfrac{6}{6}=\dfrac{x+5}{6}\\ \Rightarrow3x-9-4+2x-6=x+5\\ \Leftrightarrow5x-19=x+5\\ \Leftrightarrow4x=24\\ \Rightarrow x=6\\ \Rightarrow S=\left\{6\right\}\)

4 tháng 1 2019

\(c.\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\\ \Leftrightarrow\dfrac{x+5}{2010}+1+\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1+\dfrac{x+2}{2013}+1=-4+4\\ \Rightarrow\dfrac{2015+x}{2010}+\dfrac{2015+x}{2011}+\dfrac{2015+x}{2012}+\dfrac{2015+x}{2013}=0\\ \Leftrightarrow\left(2015+x\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)=0\)

Do \(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}>0\)

nên \(2015+x=0\Rightarrow x=-2015\)

Câu d tương tự...thêm rồi chuyển vế sang :v

30 tháng 4 2018

a) 4x -8 ≥ 3(3x-1)-2x +1

⇒4x -8 ≥7x -2

⇒4x -7x ≥ -2 +8

⇒-3x ≥ 6

⇒x≤-2

Vậy bpt có nghiệm là:{x|x≤-2}

30 tháng 4 2018

b) (x-3)(x+2)+(x+4)2≤ 2x (x+5)+4

⇔ x2+2x - 3x - 6 +x2 + 8x +16≤ 2x2 + 10x +4

⇔ x2 +2x - 3x + x2 + 8x - 2x2- 10x ≤ 4+6-16

⇔ -3x ≤ -6

⇔ x≥ 2

Vậy bpt có tập nghiệm là: {x|x≥2}

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Ta có:

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow \left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow \frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow (x-2013)\left(\frac{1}{2012}+\frac{1}{2011}+...+1\right)=0\)

Dễ thấy \(\frac{1}{2012}+\frac{1}{2011}+...+1\neq 0\Rightarrow x-2013=0\)

\(\Leftrightarrow x=2013\)

Vậy PT có nghiệm \(x=2013\)

3 tháng 7 2018

\(1.\) Giả sử : \(a\ge b\ge c\Rightarrow a+b\ge a+c\ge b+c\)

Ta có : \(\dfrac{c}{a+b}\le\dfrac{c}{b+c};\dfrac{b}{a+c}\le\dfrac{b}{b+c};\dfrac{a}{b+c}=\dfrac{a}{b+c}\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\le\dfrac{b+c}{b+c}+\dfrac{a}{b+c}=1+\dfrac{a}{b+c}< 1+1=2\left(đpcm\right)\)

\(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)

\(\Leftrightarrow x^2y+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2=0\)

\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)y\left(x+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

+) Với : \(x=-y\) , ta có :

Đpcm \(\Leftrightarrow-\dfrac{1}{y^{2011}}+\dfrac{1}{y^{2011}}+\dfrac{1}{z^{2011}}=\dfrac{1}{-y^{2011}+y^{2011}+z^{2011}}\)

\(\Leftrightarrow\dfrac{1}{z^{2011}}=\dfrac{1}{z^{2011}}\left(luôn-đúng\right)\)

Tương tự với 2 TH còn lại .

\(\RightarrowĐCPM\)

1 tháng 4 2017

(x-5)(x-9)>0\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\Leftrightarrow x>5\\x-9>0\Leftrightarrow x>9\end{matrix}\right.\)

Vậy x>9 thì (x-5)(x-9)>0

1 tháng 4 2017

\(\dfrac{x-5}{x-8}>2\\ < =>x-5>2\left(x-8\right)\\ < =>x-5>2x-16\\ < =>-x>-11\\ < =>x< 11\)

vậy nghiệm của bpt là x<11

ai bít thì giúp mình với nhé

\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)

\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)

\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)

\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)

\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)

\(\Leftrightarrow2015-x=0\)

\(\Leftrightarrow x=2015\)

KL : PT có nghiệm \(S=\left\{2015\right\}\)

16 tháng 1 2018

a) 4( x - 2 ) - 3 ( x - 3 ) = 1

4x - 8 - 3x + 9 =1

x = 0

16 tháng 1 2018

a)\(\dfrac{x-2}{3}-\dfrac{x-3}{4}=1\Leftrightarrow\dfrac{4x-8-3x+9}{12}=1\) ⇔x+1=12⇔x=11 Vậy phương trình đã cho có tập nghiệm S=\(\left\{11\right\}\) b)\(\dfrac{x-1}{2015}+\dfrac{x-2}{2014}+\dfrac{x-5}{2011}+\dfrac{x+1}{2017}=4\) \(\Leftrightarrow\left(\dfrac{x-1}{2015}-1\right)+\left(\dfrac{x-2}{2014}-1\right)+\left(\dfrac{x-5}{2011}-1\right)+\left(\dfrac{x+1}{2017}-1\right)=4-4\) \(\Leftrightarrow\dfrac{x-1-2015}{2015}+\dfrac{x-2-2014}{2014}+\dfrac{x-5-2011}{2011}+\dfrac{x+1-2017}{2017}=0\) \(\Leftrightarrow\dfrac{x-2016}{2015}+\dfrac{x-2016}{2014}+\dfrac{x-2016}{2011}+\dfrac{x-2016}{2017}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\right)=0\)

\(\Leftrightarrow x-2016=0\) (vì \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\ne0\) )

⇔x=2016

Vậy phương trình đã cho có tập nghiệm S=\(\left\{2016\right\}\)

c)3(x-1)-5(x+4)+6(2-x)=7 ⇔3x-3-5x-20+12-6x=7⇔3x-5x-6x=7-12+20+3⇔-8x=18⇔\(x=\dfrac{-9}{4}\)

Vậy phương trình đã cho có tập nghiệm S=\(\left\{\dfrac{-9}{4}\right\}\)