K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

14 tháng 9 2021

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

NV
24 tháng 10 2019

1/ \(sinx=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

b/ \(cos=-\frac{\sqrt{2}}{2}=cos\left(\frac{3\pi}{4}\right)\)

\(\Rightarrow x=\pm\frac{3\pi}{4}+k2\pi\)

c/ \(tanx=\sqrt{3}=tan\left(\frac{\pi}{3}\right)\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

d/ \(cotx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)

NV
24 tháng 10 2019

2/

a/ \(sin^2x+sinx-2=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-2\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

b/ \(cot^2x-2cotx-3=0\)

\(\Leftrightarrow\left(cotx+1\right)\left(cotx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot3+k\pi\end{matrix}\right.\)

3/ \(\Leftrightarrow1-cos2x+1-cos4x+1-cos6x=3\)

\(\Leftrightarrow cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2coss4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

3 tháng 8 2017

Năm nay bạn lên 11 à, nếu đúng chắc bạn đang tự học phải không?

a) Bạn dùng máy tính (mode 5 3 rồi bấm 3= 1= =) máy hiện ra 2 nghiệm

x=-1/3 và x=0 (nghiệm x chính là cosx đó)

x=-1/3 (hơi lẻ đó)<=>cosx=-1/3 <=> x= (+) (-) arc cos(-1/3)+k2\(\Pi\) (k\(\in\)Z) (arc cos(-1/3) = SHIFT COS trong máy tính)

x=0<=> cosx=0<=> x=\(\dfrac{\Pi}{2}\)+l\(\Pi\) (l\(\in\)Z)

b) Bạn dùng công thức cos2x=2cos2x-1 là ra ngay thôi mà!

pt<=>cos2x+(2cos2x-1)2=0

<=>cos2x+4cos4x-4cos2x+1=0

<=>4cos4x-3cos2x+1=0 (pt vô nghiệm, thốn vl) chắc đề sai hay gì đó bạn ơi, thường người ta ít cho vô nghiệm lắm!

c) Đặt t=sinx+cosx =>t2=sin2x+cos2x+2sinxcosx=1+2sinxcosx<=>2sinxcosx=t2-1

PT trở thành:

t+t2-1=0<=>\(\left[{}\begin{matrix}t1=\dfrac{-1+\sqrt{5}}{2}\\t2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}six+cosx=t1\\sinx+cosx=t2\end{matrix}\right.\)

Mà sinxx+ cosx=\(\sqrt{2}\) sin(x+\(\dfrac{\Pi}{4}\)) ct ày không biết bạn học chưa nhưng nó sử dụng rất nhiều đấy cố mà nhớ nhé!

1) sin(x+pi/4)=\(\dfrac{\sqrt{10}-\sqrt{2}}{4}\)=A<=>x=arc sinA-pi/4+k2pi (k thuộc Z) hoặc x=pi-arc sinA-pi/4+k2pi

2) sin(x+pi/4)=\(\dfrac{-\sqrt{10}-\sqrt{2}}{4}\)=B<=>x=......... như trên vậy đó hihi!

d)ĐIều kiện: cosx khác 0 <=> x\(\ne\)pi/2+kpi và cos2x khác 0<=> x \(\ne\)\(\dfrac{\Pi}{4}\)+kpi/2

pt<=>\(\dfrac{sinx}{cosx}\)+\(\dfrac{sin2x}{cos2x}\)=0

<=>sinx.cos2x+sin2x.cosx=0

<=>sinx.cos2x+2sinx.cos2x=0 (sin2x=2sinx.cosx)

<=>sinx(cos2x+2cos2x)=0

<=>sinx(2cos2x-1+2cos2x)=0

<=>sinx(4cos2x-1)=0

1) sinx=0<=>x=kpi (nhận)

2)4cos2x-1=0<=>cosx=1/2<=>x=+ - pi/3+k2pi Hoặc cosx=-1/2

<=>x= + - 2pi/3+kpi(nhận)

Chúc bạn học tốt !

4 tháng 8 2017

À quên câu c) thiếu điều kiện của t rồi

\(-\sqrt{2}\le t\le\sqrt{2}\)

NV
7 tháng 11 2019

ĐKXĐ: ...

a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)

\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)

\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)

\(\Leftrightarrow cosx=2sin4x.cosx\)

\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)

\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)

\(\Leftrightarrow cos2x+2sin^22x=1\)

\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)

\(\Leftrightarrow-2cos^22x+cos2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
7 tháng 11 2019

1c/

\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)

\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)

\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)

\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)

\(\Leftrightarrow2sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)

Bài 2:

a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow4m\le4\Rightarrow m\le1\)

27 tháng 7 2019
https://i.imgur.com/EkFiJjR.jpg
27 tháng 7 2019
https://i.imgur.com/bDYRFb9.jpg
NV
4 tháng 10 2020

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)

=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi

=>x=pi/8+kpi hoặc x=-pi/8+kpi

b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)

=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi

=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi

=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi

d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)

=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi

=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi

=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2

e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)

=>x-pi/3=kpi

=>x=kpi+pi/3

NV
8 tháng 8 2020

d.

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)

\(\Leftrightarrow sin^2x-cos^2x=0\)

\(\Leftrightarrow-cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

e. Đề thiếu

f.

\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)

\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
8 tháng 8 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b.

\(\Leftrightarrow sin2x=1\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

c.

\(\Leftrightarrow2sin2x.cos2x=-1\)

\(\Leftrightarrow sin4x=-1\)

\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

NV
12 tháng 10 2020

a.

\(1-sin^2x+1-2sin^2x+sinx+2=0\)

\(\Leftrightarrow-3sin^2x+sinx+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b. ĐKXĐ; ...

\(5tanx-\frac{2}{tanx}-3=0\)

\(\Leftrightarrow5tan^2x-3tanx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)

NV
12 tháng 10 2020

e.

Ko rõ vế phải

f.

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow1-2sin^22x=0\)

\(\Leftrightarrow cos4x=0\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)