Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt<=>(2x)^3+2x=(x+1)căn(x+1)+căn(x+1) (*)
Xét hs f(x)=x^3+x, x>=-1
f'(x)=3x^2+x>0, với mọi x>=-1==> Hs đb trên [-1;+vô cùng]
(*)==> 2x=căn(x+1)
\(pt\Leftrightarrow \dfrac{3^x}{3}.\dfrac{4^x}{4}=12^{9-x}\Leftrightarrow 12^{x-1}=12^{9-x}\)
Suy ra x-1=9-x nên x=5
Sửa đề : \(x^4-6x^2+8x-3=(x-1)^3(x+3)\)
Lời giải:
Ta thấy tổng các hệ số của đa thức bằng $0$ nên đa thức có nghiệm là $1$, nghĩa là khi phân tích sẽ có thừa số $x-1$ và cứ thế triển khai thôi:
\(x^4-6x^2+8x-3=(x^4-x^2)-(5x^2-5x)+(3x-3)\)
\(=x^2(x^2-1)-5x(x-1)+3(x-1)\)
\(=(x-1)[x^2(x+1)-5x+3]\)
\(=(x-1)(x^3+x^2-5x+3)\)
\(=(x-1)[x^3-x^2+2x^2-2x-(3x-3)]\)
\(=(x-1)[x^2(x-1)+2x(x-1)-3(x-1)]\)
\(=(x-1)(x^2+2x-3)(x-1)=(x-1)^2(x^2-x+3x-3)\)
\(=(x-1)^2[x(x-1)+3(x-1)]=(x-1)^2(x-1)(x+3)=(x-1)^3(x+3)\)
ĐKXĐ: ...
\(\Leftrightarrow\left(2x\right)^3+2x=\left(x+1\right)\sqrt{x+1}+\sqrt{x+1}\)
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt{x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a=b^3+b\)
\(\Rightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)
\(\Rightarrow2x=\sqrt{x+1}\) (\(x\ge0\))
\(\Leftrightarrow4x^2=x+1\Rightarrow4x^2-x-1=0\Rightarrow x=\frac{1+\sqrt{17}}{8}\)