K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^3-6x^2=x^2-3x\)

=>\(2x^2\left(x-3\right)-x\left(x-3\right)=0\)

=>x(x-3)(2x-1)=0

=>\(\left[{}\begin{matrix}x=0\\x-3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)

30 tháng 5 2020

a, Thay \(m=-3\)vào phương trình ta có :

\(x^2+x\left(m-1\right)-\left(2m+3\right)=0\)

\(< =>x^2-4x+3=0\)

Ta có : \(\Delta=\left(-4\right)^2-4.3=16-12=4;\sqrt{\Delta}=\sqrt{4}=2\)

\(x_1=\frac{4+2}{2}=3\)\(;\)\(x_2=\frac{4-2}{2}=1\)

nên tập nghiệm của phương trình trên là \(\left\{1;3\right\}\)

b, Ta có : \(\Delta=\left(m-1\right)^2+4\left(2m+3\right)\ge0\)

\(=m^2-2m+1+8m+12\ge0\)

\(=m\left(m-2\right)+8\left(m-2\right)+29\ge0\)

\(=\left(m+8\right)\left(m-2\right)+29\ge0\)

\(=m^2+6m+13\ge0\)( đến đây thì chịu r :) )

c, theo vi ét ta có \(x_1+x_2=-\frac{b}{a}\)

\(< =>x_1+x_2=\frac{-m+1}{2}=7\)

\(< =>-m+1=14\)

\(< =>-m=13< =>m=-13\)

22 tháng 7 2016

sao không ai giúp tớ vậykhocroi

27 tháng 5 2018

2x4-x3-2x2-x+2=0

\(\Leftrightarrow\)2x4-2x3+x3-x2-x2+x-2x+2 =0

\(\Leftrightarrow\)2x3(x-1)+x2(x-1)-x(x-1)+2(x-1)=0

\(\Leftrightarrow\)(x-1)(2x3+x2-x+2)=0

\(\Leftrightarrow\)(x-1)(x-1)(2x2+3x+2)=0

\(\Leftrightarrow\)(x-1)2(2x2+3x+2)=0

\(\Leftrightarrow\) x-1=0 (do 2x2+3x+2 >0)

\(\Leftrightarrow\)x=1

19 tháng 8 2015

Đặt t = x+ x . Phương trình trở thành: 3t- 2t - 1 = 0 

Nhận xét: 3 - 2 + (-1) = 0 nên phương trình có 2 nghiệm là t = 1 hoặc t  -1/3

+) t = 1 => x2 + x = 1 <=> x+ x - 1 = 0 

\(\Delta\) = 5 => x\(\frac{-1+\sqrt{5}}{2}\); x2 = \(\frac{-1-\sqrt{5}}{2}\)

+) t = -1/3 => 3x2 + 3x + 1 = 0  (*)

\(\Delta\) = 9 - 12 = - 3 < 0 => pt (*) vô nghiệm 

Vậy PT đã cho có 2 nghiệm x1 = ..; x2 = ...

AH
Akai Haruma
Giáo viên
9 tháng 1 2017

Lời giải:

Ta đưa về bài toán tìm nghiệm nguyên dương.

TH1: \(x,y\in\mathbb{Z}^+\)

PT tương đương: \((x-y)(4xy-2)=(xy)^3-1\geq 0\Rightarrow x\geq y\)

Nếu $x=y$ thì hiển nhiên có $xy=1\Rightarrow x=y=1$.

Xét $x>y$ có \(4xy(x-y)-2(x-y)+1=(xy)^3\vdots xy\Rightarrow 2(x-y)-1\vdots xy\)$(1)$

Vì $2(x-y)-1\neq0$ nên suy ra để có $(1)$ thì \(2(x-y)-1\geq xy\Leftrightarrow (y-2)(x+2)\leq -5<0\)

\(\Rightarrow y-2<0\rightarrow y=1\). Thay vào PT ban đầu thu được $x=y=1$ (loại vì đang xét $x>y$)

TH2: $x,y$ đều âm. Ta thay $x=-a,y=-b$ với $a,b$ nguyên dương.

Phương trình trở thành $2a(2b^2+1)-2b(2a^2+1)+1=(ab)^3$

Đây là dạng PT tương tự TH1, ta cũng thu được $a=b=1$, tức là $x=y=-1$

TH3: $x>0,y<0$. Đặt $x=a,y=-b$ ($a,b$ nguyên dương)

PT tương đương: $2b(2a^2+1)+2a(2b^2+1)-1=(ab)^3$

\(\Rightarrow 2(a+b)-1\vdots ab\). Vì $2(a+b)-1\neq 0$ nên \(2(a+b)-1\geq ab\Rightarrow (a-2)(b-2)\leq 3\)

Với $a,b\geq 1$ dễ dàng suy ra không có bộ nghiệm nào thỏa mãn

TH4: $x<0,y>0$. Đặt $x=-a,y=b$ ($a,b$ nguyên dương)

PT tương đương $2a(2b^2+1)+2b(2a^2+1)+1+(ab)^3=0$ (vô lý)

Vậy $(x,y)=(1;1)$ hoặc $(x,y)=(-1;-1)$

18 tháng 10 2020

a) Với m = 3 

Ta có: \(x^4-2.3.x^2+3^2-1=0\)

<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)

<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)

b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)

(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0 

Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)

+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm 

+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại

Vậy m = 1

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm

20 tháng 3 2019

5 cách ở đây luôn nhá(của mình với anh Incursion_03):Câu hỏi của Vinh Lê Thành - Toán lớp 8