K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

g: =>(x-1)(x-2)=0

=>x=1 hoặc x=2

i: \(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

=>x=1 hoặc x=-2

14 tháng 3 2022

câu i vs câu h nữa

g: \(x^2-3x+2=0\)

=>(x-1)(x-2)=0

=>x=1 hoặc x=2

i: \(x^4+x^2+6x-8=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x+2\right)\left(x^2-2x+4\right)+x\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

=>x=1 hoặc x=-2

14 tháng 3 2022

còn câu h

 

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg
15 tháng 2 2020

Mấy cái này chuyển vế đổi dấu là xong í mà :3

1,

16-8x=0

=>16=8x

=>x=16/8=2

2, 

7x+14=0

=>7x=-14

=>x=-2

3,

5-2x=0

=>5=2x

=>x=5/2

Mk làm 3 cau làm mẫu thôi

Lúc đăng đừng đăng như v :>

chi ra khỏi ngt nản

từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại

15 tháng 2 2020
https://i.imgur.com/NUn4fHf.jpg
15 tháng 2 2020

mk lưu nhầm ảnh ở bài dưới của câu

a) Ta có: \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\frac{\left(2x+1\right)^2\cdot3}{15}-\frac{5\left(x-1\right)^2}{15}-\frac{7x^2-14x-5}{15}=0\)

\(\Leftrightarrow3\left(4x^2+4x+1\right)-5\left(x^2-2x+1\right)-7x^2+14x+5=0\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

\(\Leftrightarrow36x+3=0\)

\(\Leftrightarrow36x=-3\)

\(\Leftrightarrow x=\frac{-3}{36}\)

Vậy: \(x=\frac{-3}{36}\)

b) Ta có: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{201-x}{99}+\frac{203-x}{97}-\frac{205-x}{95}-3=0\)

\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)

\(\Leftrightarrow\frac{201-x+99}{99}+\frac{203-x+97}{97}+\frac{205-x+95}{95}=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\)

nên 300-x=0

\(\Leftrightarrow x=300\)

Vậy: x=300

c) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra x+1=0

hay x=-1

Vậy: x=-1

d) Ta có: \(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\)

\(\Leftrightarrow t^2-1-24=0\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-1-5\right)\left(x^2+x-1+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\right]\)(3)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\ne0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

e) Ta có: \(\left(5x-3\right)-\left(4x-7\right)=0\)

\(\Leftrightarrow5x-3-4x+7=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy: x=-4

f) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{1}{3}\right\}\)

g) Ta có: \(x^2+6x-16=0\)

\(\Leftrightarrow x^2-2x+8x-16=0\)

\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-8\right\}\)

h) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-5;2\right\}\)

i) Ta có: \(x^2+x-2=0\)

\(\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-2\right\}\)

k) Ta có: \(3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;\frac{-1}{3}\right\}\)

l) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

10 tháng 3 2020

\(a.17+8x=10-6x\\\Leftrightarrow 8x+6x=-17+10\\\Leftrightarrow 2x=-7\\ \Leftrightarrow x=-\frac{7}{2}\)

Vậy nghiệm của phương trình trên là \(-\frac{7}{2}\)

\(b.3\left(x+5\right)+7=19-5\left(x-2\right)\\\Leftrightarrow 3x+15+7=19-5x+10\\ \Leftrightarrow3x+5x=-15-7+19+10\\ \Leftrightarrow8x=7\\\Leftrightarrow x=\frac{7}{8}\)

Vậy nghiệm của phương trình trên là \(\frac{7}{8}\)

\(c.3x-4\left(x+2\right)\left(x+3\right)=14-4\left(x^2-3x\right)\\ \Leftrightarrow3x-4\left(x^2+5x+6\right)=14-4x^2+12x\\ \Leftrightarrow4x^2-4x^2+3x-5x-12x=24+14\\ \Leftrightarrow-14x=38\\ \Leftrightarrow x=-\frac{19}{7}\)

Vậy nghiệm của phương trình trên là \(-\frac{19}{7}\)

\(d.x+\frac{3}{4}+3x+2=\frac{x}{3}-3x-\frac{2}{6}\\ \Leftrightarrow\frac{12x}{12}+\frac{9}{12}+\frac{36x}{12}+\frac{24}{12}=\frac{4x}{12}-\frac{36x}{12}-\frac{4}{12}\\ \Leftrightarrow12x+9+36x+24=4x-36x-4\\ \Leftrightarrow12x+36x+36x-4x=-24-9-4\\ \Leftrightarrow80x=-37\\ \Leftrightarrow x=-\frac{37}{80}\)

31 tháng 3 2016

a) x vô nghiệm

b)<=>(x2-3x+3)(x2-2x+3)-2x2=(x-3)(x-1)(x2-x+3)

=>(x-3)(x-1)(x2-x+3)=0

TH1:x-3=0

=>X=3

TH2:x-1=0

=>x=1

TH3:x2-x+3=0

<=>(-1)2-4(1.3)=-11

vì -11<0

=>x=1 hoặc 3

bạn tự tiếp làm đi dễ mà

15 tháng 2 2020

7)(16-8x)(2-6x)=0  

=> 16 - 8x = 0 hoặc 2 - 6x = 0

=> 16 = 8x hoặc 2 = 6x

=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0  

=> x + 4 = 0 hoặc 6x - 12 = 0

=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0 

=> 11 - 33x = 0 hoặc x + 11 = 0

=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0 

=> x - 1/4 = 0 hoặc x + 5/6 = 0

=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0  

=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0

=> 2x = 7/8 hoặc 3x = -1/3

=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0  

=> x(3 - 2x) = 0

=> x = 0 hoặc 3 - 2x = 0

=> x = 0 hoặc x = 3/2

15 tháng 2 2020

\(a,\left(16-8x\right)\left(2-6x\right)=0\)

\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)

\(b,\left(x+4\right)\left(6x-12\right)=0\)

\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)

\(c,\left(11-33x\right)\left(x+11\right)=0\)

\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)

\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)

\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)

\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)

\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)

\(f,3x-2x^2=0\)

\(x\left(3-2x\right)=0\)

\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)

14 tháng 5 2019

casio fx 570vn

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)

hay \(x\in\left\{0;-4;3\right\}\)

d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)

hay \(x\in\left\{-6;1;-1;-4\right\}\)

f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

hay \(x\in\left\{-3;2\right\}\)