K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2022

c) ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ge0\\9x^2-x-4\ge0\end{matrix}\right.\)

Ta có \(2\sqrt{x+3}=9x^2-x-4\)

<=> \(9x^2-\left(x+2\sqrt{x+3}+4\right)=0\)

<=> \(9x^2-\left(\sqrt{x+3}+1\right)^2=0\)

<=> \(\left(3x-\sqrt{x+3}-1\right).\left(3x+\sqrt{x+3}+1\right)=0\)

<=> \(\left[{}\begin{matrix}3x-1=\sqrt{x+3}\left(1\right)\\3x+1=-\sqrt{x+3}\left(2\right)\end{matrix}\right.\)

Giải (2) ta có \(\left\{{}\begin{matrix}\left(3x+1\right)^2=x+3\\3x+1\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x^2+5x-2=0\\x\le-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5\pm97}{18}\\x\le-\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{-5-\sqrt{97}}{18}\)(tm ĐKXĐ)

Giải (1) ta có \(\left\{{}\begin{matrix}\left(3x-1\right)^2=x+3\\3x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x^2-7x-2=0\\x\ge\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{9}\end{matrix}\right.\\x\ge\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow x=1\) (tm ĐKXĐ) 

Vậy tập nghiệm phương trình : S = \(\left\{1;\dfrac{-5-\sqrt{97}}{18}\right\}\)

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

22 tháng 9 2019

Giải PT

a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)

\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(12\sqrt{x} = 3\)

\(\Leftrightarrow\) \(\sqrt{x} = 4 \)

\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)

\(\Leftrightarrow\) \(x=16\)

b) \(\sqrt{x^2-2x-1} - 3 =0\)

\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)

\(\Leftrightarrow\) \(|x-1|=3\)

* \(x-1=3\)

\(\Leftrightarrow\) \(x=4\)

* \(-x-1=3\)

\(\Leftrightarrow\) \(-x=4\)

\(\Leftrightarrow\) \(x=-4\)

c) \(\sqrt{4x^2+4x+1} - x = 3\)

<=> \(\sqrt{(2x+1)^2} = 3+x\)

<=> \(|2x+1|=3+x\)

* \(2x+1=3+x\)

<=> \(2x-x=3-1\)

<=> \(x=2\)

* \(-2x+1=3+x\)

<=> \(-2x-x = 3-1\)

<=> \(-3x=2\)

<=> \(x=\dfrac{-2}{3}\)

d) \(\sqrt{x-1} = x-3\)

<=> \(\sqrt{(x-1)^2} = (x-3)^2\)

<=> \(|x-1| = x^2-2.x.3+3^2\)

<=> \(|x-1| = x-6x+9\)

<=> \(|x-1| = -5x+9\)

* \(x-1= -5x+9\)

<=> \(x+5x = 9+1\)

<=> \(6x=10\)

<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)

* \(-x-1 = -5x+9\)

<=> \(-x+5x = 9+1\)

<=> \(4x = 10\)

<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)

22 tháng 9 2019

mình nghĩ câu b \(\left(x-1\right)^2\)luôn lớn hơn 0 nên chắc không cần chia ra hai trường hợp nhỉ ?

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

8 tháng 8 2019

ai giúp mình với ạ ngaingung

15 tháng 12 2017

a,dk x>0

\(\Leftrightarrow\)\(\dfrac{\left(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}\right)\left(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}\right)}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3x\)

\(\Leftrightarrow x\left(\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}-3\right)=0\)

\(\Rightarrow\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3\)

\(\Rightarrow\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\)

kh vs dé bài ta có hệ \(\left\{{}\begin{matrix}\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\\\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\end{matrix}\right.\)

cộng vs nhau ta có

\(2\sqrt{2x^2+x+1}=3x+\dfrac{x+2}{2}\)

\(\Leftrightarrow3\sqrt{2x^2+x+1}=5x+1\)

giải ra ta có x=1(tm) x=-8/7 (l)

15 tháng 12 2017

b, dk tu xd nhé ok

\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}\right)\left(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\right)}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-2x=0\)

\(\Leftrightarrow2x\left(\dfrac{1}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1\left(l\right)\end{matrix}\right.\)

ns \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}>1\)

\(\Rightarrow x=0\left(tm\right)\)