K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2023

\(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

\(\Leftrightarrow\dfrac{x^2}{x\left(x-1\right)}+\dfrac{\left(x-1\right)^2}{x\left(x-1\right)}=2\)

\(\Leftrightarrow\dfrac{x^2+\left(x-1\right)^2}{x\left(x-1\right)}=2\)

\(\Leftrightarrow\dfrac{x^2+x^2-2x+1}{x\left(x-1\right)}-\dfrac{2x\left(x-1\right)}{x\left(x-1\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-2x+1-\left(2x^2-2x\right)}{x\left(x-1\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-2x+1-2x^2+2x}{x\left(x-1\right)}=0\)

\(\Leftrightarrow\dfrac{1}{x\left(x-1\right)}=0\)

\(\Leftrightarrow1=0x\left(x-1\right)\)

\(\Leftrightarrow1=0\)

vậy phương trình không có nghiệm

 

 

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

18 tháng 2 2020

\(ĐKXĐ:x\ne0\)

\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow x\left(x^3+1\right)-x\left(x^3-1\right)-3=0\)

\(\Leftrightarrow x\left(x^3+1-x^3+1\right)-3=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\frac{3}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)

11 tháng 8 2020

\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^3-x^2+x+x^2-x+1-2x=x\left(x^2-1\right)\)

\(\Leftrightarrow x^3-2x+1-x^3+x=0\)

\(\Leftrightarrow-x=-1\Leftrightarrow x=1\)

11 tháng 8 2020

Bài làm:

Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^3-1-2x=x^3-x\)

\(\Leftrightarrow x=-1\)

2 tháng 5 2017

\(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\) ĐKXĐ: \(x\ne1;x\ne-1\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow x^2+3x-4+x^2+1=2x^2\)

\(\Leftrightarrow x^2+x^2-2x^2+3x=4-1\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\)

2 tháng 5 2017

vậy pt trên vô nghiem

13 tháng 2 2020

\(\left(2-x\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)=-4\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=-4\)

Đặt \(x^2-4=u\)

Phương trình trở thành \(u\left(u+3\right)=-4\)

\(\Leftrightarrow u^2+3u+4=0\)

Mà \(u^2+3u+4=\left(i^2+3u+\frac{9}{4}\right)+\frac{7}{4}=\left(u+\frac{3}{2}\right)^2+\frac{7}{4}>0\)nên phương trình vô nghiệm