Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + ( x + 1 )2 = y4 + ( y + 1 )4
\(\Leftrightarrow\)2x2 + 2x + 1 = 2y4 + 4y3 + 6y2 + 4y + 1
\(\Leftrightarrow\)2x2 + 2x + 2 = 2y4 + 4y3 + 6y2 + 4y + 2
\(\Leftrightarrow\)2 . ( x2 + x + 1 ) = 2 ( y4 + 2y3 + 3y2 + 2y + 1 )
\(\Leftrightarrow\) x2 + x + 1 = ( y2 + y + 1 )2
\(\Leftrightarrow\)4 . ( x2 + x + 1 ) = 4 . ( y2 + y + 1 )2
\(\Leftrightarrow\) ( 2x + 1 )2 + 3 = [ 2 . ( y2 + y + 1 ) ]2
\(\Leftrightarrow\) [ 2 . ( y2 + y + 1 ) ]2 - ( 2x + 1 )2 = 3
\(\Leftrightarrow\)( 2y2 + 2y - 2x + 1 ) ( 2y2 + 2y + 2x + 3 ) = 3
sau đó lập bảng mà làm nhé
Ta có: \(A=y^2+\frac{1}{y^2}+x^2+\frac{1}{x^2}=4\) Ta có theo Bất đảng thức Cô Si (hay AG-MG) Ta có \(y^2+\frac{1}{y^2}\ge2.y^2.\frac{1}{y^2}=2\)
Và \(x^2+\frac{1}{x^2}\ge2.x^2.\frac{1}{x^2}=2\) Vậy \(A=x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\ge4\) Vì \(A=4\) Hay dấu bằng xảy ra khi: \(x=y=1\)Vậy phương trình trên có nghiệm: \(\left(x,y\right)=\left(1,1\right)\)
a)
\(14x^2y-21xy^2+28x^2y^2\)
\(=7xy(2x-3y+4xy)\)
b) \(x(x+y)-5x-5y=x(x+y)-5(x+y)=(x-5)(x+y)\)
c)
\(10x(x-y)-8(y-x)=10x(x-y)+8(x-y)\)
\(=(x-y)(10x+8)=2(x-y)(5x+4)\)
a. \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\left(2x-3y+4xy\right)\)
b. \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
c. \(10x\left(x-y\right)-8\left(y-x\right)\)
\(=10x\left(x-y\right)+8\left(x-y\right)\)
\(=\left(10x+8\right)\left(x-y\right)\)
d. \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
e. Vì bài này giải không ra nên mình nghĩ nó sai đề, sửa lại tí nhé!
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+zy+z^2-3xy\right)\)
g. \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y^2\right)-4z^2\right]\)
\(=5\left(x-y+z\right)\left(x-y-z\right)\)
h. \(x^3-x+3x^2y+3xy^3+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
i. \(x^2+7x-8\)
\(=x^2-x+8x-8\)
\(=x\left(x-1\right)+8\left(x-1\right)\)
\(=\left(x+8\right)\left(x-1\right)\)
pt đã cho tương đương với
4x2 + 4y2+ 4t2 + 4z2 = 4xy + 4xz + 4xt
<=> x2 - 4xy + 4y2 + x2 - 4xz + 4z2 + x2 - 4xt + 4t2 + x2 = 0
<=> (x-y)2 + (x-z)2 + (x-t)2 + x2 = 0
<=> (x-y)2 = (x-z)2 = (x-t)2 = x2 = 0
<=> x-y = x-z = x - t = x =0
<=> x = y = z = t = 0
Bài 1 : (Mình chỉ tìm GTLN được thôi nha, bạn xem lại đề)
x2 + y2 + z2 < 3 ; mà x,y,z > 0 => \(\left(x;y;z\right)\in\left\{0;1\right\}\)
Ta thấy: (xy+1)-(x+y) = (1-x).(1-y)>=0
=> xy+1 > x+y
Tương tự:
yz+1 > y+z
xz+1 > z+x
Ta có:
(x+y+z).(1/(xy+1)+1/(yz+1)+1/(zx+1)) < x/(yz+1)+y/(zx+1)+z/(xy+1)
< x/(yz+1) + y/(zx+y) +z/(xy+z)
= x(1/(yz+1) -x/(xz+y) -y/(xy+z))
< x(1- z/(z+y) -y/(y+z))+5
= 5
Vậy GTLN là 5
=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7
= -2
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2
= ( 4x - 5 - 3x + 2 )2
= ( x - 3 )2
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2= 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2
= ( 3x - y + 3x + y )2
= ( 6x )2
= 36x2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
1, rút gọn
a, (x-3)(x+3)-(x-7)(x+7)
= x^2 - 9 - (x^2 - 49)
= x^2 - 9 - x^2 + 49
= 40
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)
= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)
= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20
= x^2 - 66x + 49
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2
= 18x^2 - 2y^2 + 18x^2 + 2y^2
= 36x^2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
= dài vl
TA CÓ:
\(x^2+1\ge2x\)
\(y^2+2\ge2y\sqrt{2}\)
\(z^2+8\ge2z\sqrt{8}\)
=> \(\left(x^2+1\right)\left(y^2+2\right)\left(z^2+8\right)\ge8xyz\sqrt{2.8}=32xyz\)
MÀ: \(\left(x^2+1\right)\left(y^2+2\right)\left(z^2+8\right)=32xyz\)
DẤU "=" XẢY RA <=> \(x^2=1;y^2=2;z^2=8\)
=> \(x;y;z=.....\)