Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a, x(x+3)-(2x-1)(x+3)=0\)
\(⇔(x+3)(1-x)=0\)
\(⇔\left[\begin{array}{} x+3=0\\ 1-x=0 \end{array}\right.\)
\(⇔\left[\begin{array}{} x=-3\\ x=1 \end{array}\right.\)
Vậy phương trình có tập nghiệm là S={\(-3; 1\)}
\(b, 3x-5(x+2)=3(4-2x)\)
\(⇔3x-5x-10=12-6x\)
\(⇔3x-5x+6x=12+10\)
\(⇔4x=22\)
\(⇔x=\dfrac{22}{4}\)
Vậy pt có 1 nghiệm là \(x=\dfrac{22}{4}\)
\(c, (4x-3)(5x-6)=(4x-3)(2x-3)\)
\(⇔5x-6=2x-3\)
\(⇔5x-2x=-3+6\)
\(⇔3x=3\)
\(⇔x=1\)
Vậy pt có 1 nghiệm là \(x=1\)
b) Có \(\left|2x+1\right|\ge0;\left|4x^2-1\right|\ge0\forall x\)
\(\Rightarrow\left|2x+1\right|+\left|4x^2-1\right|\ge0\forall x\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x+1=0\\4x^2-1=0\end{matrix}\right.\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(\left|2x-1\right|=\left|x+5\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+5\\2x-1=-x-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\dfrac{4}{3}\end{matrix}\right.\)
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
\(x\ne\left\{-4;-3;-2;-1\right\}\)
\(\Leftrightarrow\frac{x^2+x+1}{x+1}-1+\frac{x^2+2x+2}{x+2}-1=\frac{x^2+3x+3}{x+3}-1+\frac{x^2+4x+4}{x+4}-1\)
\(\Leftrightarrow\frac{x^2}{x+1}+\frac{x^2+x}{x+2}-\frac{x^2+2x}{x+3}-\frac{x^2+3x}{x+4}=0\)
\(\Leftrightarrow x\left(\frac{x}{x+1}+\frac{x+1}{x+2}-\frac{x+2}{x+3}-\frac{x+3}{x+4}\right)=0\)
\(\Leftrightarrow x\left(1-\frac{1}{x+1}+1-\frac{1}{x+2}+\frac{1}{x+3}-1+\frac{1}{x+4}-1\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{x+3}+\frac{1}{x+4}-\frac{1}{x+1}-\frac{1}{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x+3}-\frac{1}{x+1}=\frac{1}{x+2}-\frac{1}{x+4}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{-2}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+2\right)\left(x+4\right)}\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)+\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow2x^2+10x+11=0\Rightarrow x=\frac{-5\pm\sqrt{3}}{2}\)
\(\frac{5}{3}-\left(2x-\frac{2}{4}\right)\ge x-\left(4x-\frac{3}{6}\right)\)
\(\Leftrightarrow\frac{5}{3}-2x+\frac{1}{2}\ge x-4x+\frac{1}{2}\)
\(\Leftrightarrow x\ge-\frac{5}{3}\)
Ý c cx vậy nha ! Chuyển vế rồi thu gọn lại
Quy đồng xong khử mẫu là được nha bạn