Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
Đặt \(\frac{x}{\sqrt{1-x^2}}=t\Rightarrow t^2=\frac{x^2}{1-x^2}=\frac{1}{1-x^2}-1\)
Pt trở thành:
\(t^2+1=3t-1\Leftrightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{1-x^2}=t^2+1=2\\\frac{1}{1-x^2}=t^2+1=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\frac{1}{2}\\x^2=\frac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow...\)
a: \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)
\(\Leftrightarrow x^2+30x+25=x^2+25x\)
=>5x=-25
hay x=-5(loại)
b: \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)
=>2x+7=10
hay x=3/2
ĐK: \(x\ne-2;-3;-4;-5;-6\)
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\Leftrightarrow\left(x+2\right)\left(x+6\right)=32\)
\(\Leftrightarrow x^2+8x-20=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
\(...\Leftrightarrow\frac{1}{\left(x+2\right) \left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{18}\Leftrightarrow\frac{x+6}{\left(x+2\right)\left(x+6\right)}-\frac{x+2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\Rightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Rightarrow\left(x+2\right)\left(x+6\right)=72\)
=> \(x^2+8x-60=0\)
Phân tich đa thức thành nhân tử để tìm x
ĐKXĐ:........
\(\Leftrightarrow2x-2\sqrt{5x}+8-4\sqrt{x-1}=0\)
\(\Leftrightarrow x+5-2\sqrt{5x}+x+3-4\sqrt{x-1}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)^2-20x}{x+5+2\sqrt{5x}}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}=0\)
\(\Leftrightarrow\frac{\left(x-5\right)^2}{x+5+2\sqrt{5x}}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}=0\)
\(\Leftrightarrow x=5\)
Ta có : \(3x^2+5x+14=5\left(x+1\right)\sqrt{4x-1}\)
\(\Leftrightarrow\left(3x^2+5x+14\right)^2=\left[5\left(x+1\right)\sqrt{4x-1}\right]^2\)
\(\Leftrightarrow9x^4+25x^2+196+2\left(3x^2.5x+5x.14+3x^2.14\right)=25.\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+25x^2+196+2\left(15x^3+70x+42x^2\right)=25\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+25x^2+196+30x^3+140x+84x^2=25\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=25\left(x^2+2x+1\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+200x^2+100x-25x^2-50x-25\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+175x^2+50x-25\)
Đến đây chuyển vế sang giải nhé mệt quá
- Với \(x=0\) ko phải nghiệm
- Với \(x< 0\Rightarrow VT>0\) pt vô nghiệm
- Với \(x>0\) chia 2 vế cho x ta được:
\(x+\frac{1}{x}-5+\sqrt{x^2+\frac{1}{x^2}}=0\)
Đặt \(x+\frac{1}{x}=t\ge2\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Leftrightarrow t-5=\sqrt{t^2-2}\Leftrightarrow\sqrt{t^2-2}=5-t\) (\(t\le5\))
\(\Leftrightarrow t^2-2=25-10t+t^2\Rightarrow t=\frac{27}{10}\)
\(\Rightarrow x+\frac{1}{x}=\frac{27}{10}\Leftrightarrow x^2-\frac{27}{10}x+1=0\)
\(\Leftrightarrow...\)
ta có Pt
<=>\(2x^2+10x+2-2\left(x+5\right)\sqrt{x^2+1}=0\Leftrightarrow x^2+1-2\left(x+5\right)\sqrt{x^2+1}+\left(x^2+10x+25\right)=24\)
<=>\(\left(\sqrt{x^2+1}-x-5\right)^2=24\)
đến đây thì chia ra 2 trường hợp và làm tiếp nhé,
^_^