Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt (x+3)/(x-2)=a, (x-3)/(x+2)=b. Suy ra (x^2-9)/(x^2-4)=ab
Ta có pt: a^2+6b^2=7ab.
Giải ra tìm a, b, rồi tìm x.
1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé
Tìm x , y ; biết :
1. x2 + 4y + 4y2 + 26 - 10x = 0
2. 4y2 + 34 - 10x + 12y + x2 =0
Giúp mk với khó quá
Lấy pt (2) - pt (1) ta có:
8y + 8 = 0
=> y = -1
Thay y = -1 vào pt (1) ta có:
x2 - 10x + 26 = 0
( Giải phương trình bậc 2 bằng máy tính casio )
Ta được: x là số phức => phương trình vô nghiệm
=> Không tìm được cặp x,y thảo mãn hệ phương trình trên.
\(\text{a) }\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\\ \Leftrightarrow\dfrac{2-x-2002}{2002}=\left(\dfrac{1-x}{2003}-1\right)+\left(1-\dfrac{x}{2004}\right)\\ \Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2003-x}{2003}-\dfrac{2004-x}{2004}=0\\ \Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\\ \Leftrightarrow2004-x=0\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\right)\\ \Leftrightarrow x=2004\)
Vậy phương trình có nghiệm \(x=2004\)
\(\text{b) }\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\left(\text{ Chữa đề }\right)\\ \Leftrightarrow\left(\dfrac{x^2-10x-29}{1971}-1\right)+\left(\dfrac{x^2-10x-27}{1973}-1\right)=\left(\dfrac{x^2-10x-1971}{29}-1\right)+\left(\dfrac{x^2-10x-1973}{27}-1\right)\\ \Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-2000}{29}-\dfrac{x^2-10x-2000}{27}=0\\ \Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\\ \Leftrightarrow x^2-10x-2000=0\left(\text{Vì }\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\right)\\ \Leftrightarrow x^2-20x+10x-2000=0\\ \Leftrightarrow x\left(x-20\right)+10\left(x-20\right)=0\\ \Leftrightarrow\left(x+10\right)\left(x-20\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+10=0\\x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\\x=20\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-10;20\right\}\)
BẠN ƠI BẠN CÓ THỂ XEM LẠI ĐC KHÔNG
\(\left(x+1\right)\left(x+4\right)\left(x-2\right)^2=10x^2\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2-4x+4\right)=10x^2\)(1)
Đặt: \(x^2-4x+4=t\)
Khi đó (1) trở thành:
\(\left(t+9x\right).t=10x^2\Leftrightarrow t^2+9xt-10x^2=0\)
\(\Leftrightarrow\left(t-x\right)\left(t+10x\right)=0\Leftrightarrow\orbr{\begin{cases}t=x\\t=-10x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+4=x\\x^2-4x+4=-10x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+4=0\\x^2+6x+4=0\end{cases}}\)
Nếu \(x^2-5x+4=0\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Nếu \(x^2+6x+4=0\Leftrightarrow\left(x+3\right)^2=5\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{cases}}\)