Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đỗ Phương Dung: bạn lưu ý lần sau gõ đề bằng công thức toán (có thể gõ bằng hộp công cụ $\sum$ )
Ta có:
$\Delta=(-1)^2-4(2-\sqrt{5})(\sqrt{5}-1)=29-12\sqrt{5}$
$=20+9-2\sqrt{20.9}=(\sqrt{20}-\sqrt{9})^2=\sqrt{20}-\sqrt{9}=2\sqrt{5}-3$
Do đó PT có 2 nghiệm:
\(\left\{\begin{matrix} x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+2\sqrt{5}-3}{2(2-\sqrt{5})}=-3-\sqrt{5}\\ x_2=\frac{1-(2\sqrt{5}-3)}{2(2-\sqrt{5})}=1\end{matrix}\right.\)
Nhận xét : \(\sqrt{\left(5-2\sqrt{6}\right)^x}.\sqrt{\left(5+2\sqrt{6}\right)^x}=1\)
Ta đặt \(\sqrt{\left(5-2\sqrt{6}\right)^x}=a\Rightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=\frac{1}{a}\)
Khi đó phương trình ban đầu trở thành :
\(a+\frac{1}{a}=10\Rightarrow a^2-10a+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=5+2\sqrt{6}\\a=5-2\sqrt{6}\end{cases}}\)
+) Với \(a=5+2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2=\left(\frac{1}{5-2\sqrt{6}}\right)^2\)
\(\Leftrightarrow x=-2\)
+) Với \(a=5-2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5-2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5-2\sqrt{6}\right)^2\)
\(\Leftrightarrow x=2\)
Vậy \(x\in\left\{-2,2\right\}\) thỏa mãn đề.
\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)
\(pt\Leftrightarrow\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^{2x}}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^{2x}}=10\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^x+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^x}+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{t}+t=10\left(t=\left(\sqrt{3}+\sqrt{2}\right)^x\right)\)
\(\Leftrightarrow t^2-10t+1=0\)\(\Leftrightarrow t=5\pm2\sqrt{6}\)
\(\Rightarrow5\pm2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)^{\pm2}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Rightarrow x=\pm2\). Vậy...
1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)
\(\Leftrightarrow\left|x+5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)
2) \(ĐK:x\ge2\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)
3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)
\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4) \(ĐK:x\ge0\)
\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)
\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\)
để pt có 2 no pb => \(\Delta'\ge0\Rightarrow m^2-9\ge0\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
pt trên có no thì:
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+1\end{matrix}\right.\)
mà
\(x_1^2+x_2^2+10x_1x_2=64\\ \Leftrightarrow\left(x_1+x_2\right)^2+6x_1x_2=64\\ \Leftrightarrow\left(2m+2\right)^2+6\left(2m+1\right)=64\\ \Leftrightarrow4m^2+20m+10-64=0\\ \Leftrightarrow.....\)
vậy m=...
Ta có: \(\sqrt{x^2+7}-\sqrt{x^2-5}=x-1\) (ĐK: \(x\ge\sqrt{5}\) )
\(\Leftrightarrow\dfrac{x^2+7-16}{\sqrt{x^2+7}+4}-\dfrac{x^2-5-4}{\sqrt{x^2-5}+2}-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{x+3}{\sqrt{x^2+7}+4}-\dfrac{x+3}{\sqrt{x^2-5}+2}-1\right)=0\)
Dễ thấy: \(\dfrac{x+3}{\sqrt{x^2+7}+4}-\dfrac{x+3}{\sqrt{x^2-5}+2}-1\ne0\)
\(\Leftrightarrow x=3\left(TM\right)\)
x\(\approx\)-0,84;-11,9