K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(\frac{\left(x-3\right)}{x^2+4x+9}+2+\frac{x^2+4x+9}{x-3}=0\)

\(x^2+4x+9=\left(x+2\right)^2+5\ge5\)

x>3 hiển nhiên vô nghiệm

xét x<3

\(\frac{!\left(x-3\right)!}{x^2+4x+9}+\frac{x^2+4x+9}{!x-3!}\ge2\)

vậy pt chỉ nghiệm

khi \(\frac{!\left(x-3\right)!}{x^2+4x+9}=\frac{x^2+4x+9}{!x-3!}\Leftrightarrow x^2+4x+9=!x-3!\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\)

25-24=1

=>

x=-3 loại 

x=-2 nhận

25 tháng 12 2016

Đk:....

Đặt \(\hept{\begin{cases}a=x-3\\b=x^2+4x+9\end{cases}}\) pt trở thành

\(\frac{a}{b}+2+\frac{b}{a}=0\)\(\Leftrightarrow\frac{a^2}{ab}+\frac{2ab}{ab}+\frac{b^2}{ab}=0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{ab}=0\)\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a=-b\)\(\Leftrightarrow x-3=-\left(x^2+4x+9\right)\)

\(\Leftrightarrow x-3=-x^2-4x-9\)\(\Leftrightarrow x^2+5x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(2x^2-2x=x+3-x^2-3x\)

\(2x^2-2x=-2x+3-x^2\)

\(2x^2=3-x^2\)

\(2x^2+x^2=3\)

\(3x^2=3\Leftrightarrow x^2=1\Leftrightarrow x=\pm\sqrt{1}\)

tớ n g u nên cần tg suy nghĩ thêm :v 

câu a tìm ra r nè , vất vả :v ( kiên trì lắm đấy )

\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2+1\right)\)

\(9x^3+9x^2-4x-4-3x^2-3x-2x^2-2=0\)

\(6x^3+7x^2-7x-6=0\)

\(\left(6x^2+13x+6\right)\left(x-1\right)=0\)

\(Th1:6x^2+9x+4x+6=0\)

\(\Leftrightarrow\left[3x\left(2x+3\right)+2\left(2x+3\right)\right]=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\3x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}}\)

\(Th2:x-1=0\Leftrightarrow x=1\)

3 tháng 5 2017

a. (3x-4)2=9(x-1)(x+1)

<=> 9x2-24x+16=9x2-9

<=> -24x=-25

<=> x=\(\dfrac{25}{24}\)

Vậy S=\(\left\{\dfrac{25}{24}\right\}\)

b. (4x-5)2-4(x-2)2=0

<=> (4x-5)2-(2x-4)2=0

<=> (4x-5-2x+4)(4x-5+2x-4)=0

<=> (2x-1)(6x-9)=0

<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)

3 tháng 5 2017

c. |x2-x|= -2x

Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)

=> x2-x= -2x

<=> x2-x+2x=0

<=> x2+x=0

<=> x(x+1)=0

<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))

Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1

=> x-x2= -2x

<=> x-x2+2x=0

<=> 3x-x2=0

<=> x(3-x)=0

x=0 (thỏa mãn điều kiện x<1)

hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)

Vậy S=\(\left\{0\right\}\)

d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

ĐKXĐ: \(x\ne\pm3\)

Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

=> x2+6x+9-48x3=x2-6x+9

<=> 12x-48x3=0

<=> 12x(1-4x2)=0

<=> 12x(1-2x)(1+2x)=0

<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)

Vậy S=\(\left\{0;\pm0,5\right\}\)

4 tháng 5 2017

a ) ( 3x - 4 )2 = 9 (x-1)(x+1)

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9

\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16

\(\Leftrightarrow\) -24x = -24

\(\Leftrightarrow\) x = 1

Vậy phương trình có nghiệm x = 1 .

15 tháng 1 2019

\(a,x^2-10x-39=0\)

\(\Leftrightarrow x^2-10x-39+64=64\)

\(\Leftrightarrow x^2-10x+25=64\)

\(\Leftrightarrow\left(x-5\right)^2=64\)

làm nốt

15 tháng 1 2019

\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)

10 tháng 2 2020

Mình làm 2 câu ab thôi nhé!Cách giải các bài tập này đều như nhau!

Giải:

a) \(\frac{x-9}{x}-\frac{x}{x-9}=0\text{⇔}\frac{x-9}{x}=\frac{x}{x-9}\) (ĐKXĐ: x ≠ 0, x ≠ 9)

⇔ (x - 9)2 = x2 ⇔ (x - 9)2 - x2 = 0 ⇔ -9(2x + 9) = 0 ⇔ 2x + 9 = 0 ⇔ x = \(\frac{-9}{2}\)

Vậy phương trình trên có nghiệm là \(\frac{-9}{2}\)

b) \(\frac{x+3}{x-2}=\frac{5}{\left(x-2\right)\left(3-x\right)}\text{⇔}\frac{x+3}{5}=\frac{x-2}{\left(x-2\right)\left(3-x\right)}\text{⇔}\frac{x+3}{5}=\frac{1}{3-x}\) (ĐKXĐ: x ≠ 2, x ≠ 3)

⇔ (x + 3)(x - 3) = -5 ⇔ x2 - 9 = -5 ⇔ x2 = 4 ⇔ x = \(\pm\)2

Vậy phương trình có tập nghiêm S=\(\left\{\pm2\right\}\)

21 tháng 5 2021

a, \(\frac{x-9}{x}-\frac{x}{x-9}=0\left(đkxđ:x\ne0;9\right)\)

\(< =>\frac{\left(x-9\right)^2}{x\left(x-9\right)}-\frac{x^2}{x\left(x-9\right)}=0\)

\(< =>x^2-18x+81-x^2=0\)

\(< =>18x=81< =>x=\frac{9}{2}\left(tmđk\right)\)

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

18 tháng 3 2020

\(a.\frac{4x-3}{x-5}=\frac{29}{3}\\ \Leftrightarrow\frac{3\left(4x-3\right)}{3\left(x-5\right)}=\frac{29\left(x-5\right)}{3\left(x-5\right)}\\ \Leftrightarrow3\left(4x-3\right)=29\left(x-5\right)\\ \Leftrightarrow3\left(4x-3\right)-29\left(x-5\right)=0\\ \Leftrightarrow12x-9-29x+145=0\\ \Leftrightarrow-17x+136=0\\ \Leftrightarrow-17x=-136\\ \Leftrightarrow x=\frac{-136}{-17}=8\)

\(b.\frac{2x-1}{5-3x}=2\\ \Leftrightarrow\frac{2x-1}{5-3x}=\frac{4}{2}\\ \Leftrightarrow\frac{2\left(2x-1\right)}{2\left(5-3x\right)}=\frac{4\left(5-3x\right)}{2\left(5-3x\right)}\\ \Leftrightarrow2\left(2x-1\right)=4\left(5-3x\right)\\ \Leftrightarrow2\left(2x-1\right)-4\left(5-3x\right)=0\\ \Leftrightarrow4x-2-20+12x=0\\ \Leftrightarrow16x-22=0\\ \Leftrightarrow16x=22\\ \Leftrightarrow x=\frac{22}{16}=\frac{11}{8}\)

\(c.\frac{4x-5}{x-1}=\frac{2+x}{x-1}\\ \Leftrightarrow4x-5=2+x\\ \Leftrightarrow4x-5-2-x=0\\ \Leftrightarrow3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\frac{7}{3}\)

18 tháng 3 2020

\(d.\frac{7}{x+2}=\frac{3}{x-5}\\ \Leftrightarrow\frac{7\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}=\frac{3\left(x+2\right)}{\left(x+2\right)\left(x-5\right)}\\ \Leftrightarrow7\left(x-5\right)=3\left(x+2\right)\\ \Leftrightarrow7\left(x-5\right)-3\left(x+2\right)=0\\ \Leftrightarrow7x-35-3x-6=0\\ \Leftrightarrow4x-41=0\\ \Leftrightarrow4x=41\\ \Leftrightarrow x=\frac{41}{4}\)

\(e.\frac{2x+5}{2x}-\frac{x}{x+5}=0\\ \Leftrightarrow\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{x.2x}{2x\left(x+5\right)}=0\\ \Leftrightarrow\left(2x+5\right)\left(x+5\right)-2x^2=0\\ \Leftrightarrow2x^2+10x+5x+25-2x^2=0\\ \Leftrightarrow15x+25=0\\ \Leftrightarrow15x=-25\\ \Leftrightarrow x=\frac{-25}{15}=\frac{-5}{3}\)

\(f.\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\\\Leftrightarrow\frac{18\left(12x+1\right)}{18\left(11x-4\right)}+\frac{\left(10x-4\right).2\left(11x-4\right)}{9.2\left(11x-4\right)}=\frac{\left(20x+17\right)\left(11x-4\right)}{18\left(11x-4\right)}\\ \Leftrightarrow18\left(12x+1\right)+\left(10x-4\right).2\left(11x-4\right)=\left(20x+17\right)\left(11x-4\right)\\ \Leftrightarrow220x^2+48x+50=220x^2+107x-68\\ \Leftrightarrow48x+50=107x-68\\ \Leftrightarrow48x-107x=-68-50\\ \Leftrightarrow59x=-118\\ \Leftrightarrow x=-2\)

14 tháng 10 2018

a) \(x^2-4x=0\)

\(x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

b) \(4x^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\left(2x+3\right)\left(2x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)

c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

d) \(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-2\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)

\(\left(x-3\right)\left(3x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)

14 tháng 10 2018

\(x^2-4x=0\)

\(x.\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)

\(4x^2-9=0\)

\(2^2x^2-9=0\)

\(\left(2x\right)^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\cdot\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

\(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-\left(4x+18\right)=0\)

\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)

\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)

\(\)