K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

Ta có : \(x^2+x+4=x^2+x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)

+) \(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

19 tháng 8 2020

\(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x=-4\end{cases}}\)

+) x2 + x = - 4

<=> ( x + 1/2 )2 = - 4 + 1/4 = -15/4

Mà ( x + 1/2 )2 lớn hơn hoặc bằng 0 với mọi x

=> x2 + x + 4 = 0 ktm

Vậy pt = 0 <=> x = 1

13 tháng 8 2016

a.

\(f\left(x\right)=x^3-x^2+3x-3=x^2\left(x-1\right)+3\left(x-1\right)=\left(x^2+3\right)\left(x-1\right)\)

f(x) > 0

<=> x2 + 3 và x - 1 cùng dấu

  • \(\Leftrightarrow\hept{\begin{cases}x^2+3>0\\x-1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0\\x>1\end{cases}}\Leftrightarrow x>1\)
  • \(\Leftrightarrow\hept{\begin{cases}x^2+3< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -3\\x< 1\end{cases}\Rightarrow}\) loại

Vậy x > 1

b.

\(g\left(x\right)=x^3+x^2+9x+9=x^2\left(x+1\right)+9\left(x+1\right)=\left(x^2+9\right)\left(x+1\right)\)

g(x) < 0

<=> x2 + 9 và x + 1 khác dấu

  • \(\Leftrightarrow\hept{\begin{cases}x^2+9< 0\\x+1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -9\\x>1\end{cases}\Rightarrow}\) loại
  • \(\Leftrightarrow\hept{\begin{cases}x^2+9>0\\x+1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2>-9\\x< -1\end{cases}}\Rightarrow\)loại

Vậy không tìm được x thỏa mãn yêu cầu đề.

13 tháng 8 2016

??????

25 tháng 9 2017

b. Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)< 2^{16}\)

25 tháng 9 2017

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

\(\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{\left(x+y\right)\left(x^2-y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

Như vậy cần so sánh:

\(\left(x-y\right)\left(x^2+y^2\right)\)\(\left(x+y\right)\left(x^2-y^2\right)\)

Cần so sánh:

\(x\left(x^2+y^2\right)-y\left(x^2+y^2\right)\)\(x\left(x^2-y^2\right)+y\left(x^2-y^2\right)\)

\(x^3+xy^2-yx^2-y^3\)\(x^3-xy^2+yx^2-y^3\)

\(\left(x^3-y^3\right)+xy^2-yx^2\)\(\left(x^3-y^3\right)-xy^2+yx^2\)

Cần so sánh:

\(xy^2-yx^2\)\(yx^2-xy^2\)

Cộng cả 2 vế với \(xy^2\)\(yx^2\)

Cần so sánh:

\(xy^2-yx^2+xy^2+yx^2\)\(yx^2-xy^2+xy^2+yx^2\)

Cần so sánh

\(2xy^2\)\(2yx^2\)

\(xy^2\)\(yx^2\)

Xét các trường hợp nhỏ hơn,lớn hơn,bằng

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}\)

17 tháng 8 2017

(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49

<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49

<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49

<=>24x+25=49

<=>24x=24

<=>x=1 x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42

<=>x(x2-25)-(x3+8)=42

<=>x3-25x-x3-8=42

<=>-25x-8=42

<=>-25x=50

<=>x=-2

17 tháng 8 2017

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

<=>\(\left(x^3-6x^2+12x-8\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)

<=>\(x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

<=>24x+25=49 <=> 24x=24 <=> x=1

6 tháng 2 2017

a/ (x+5)(3x+2)^2=x^2(x+5)

(x+5)(9x^2+12x+4)=x^2(x+5)

9x^3+12x^2+4x+45x^2+60x+20=x^3+5x^2

9x^3-x^3+12x^2+45x^2-5x^2+4x+60x=-20

8x^3+52x^2+64x+20=0

........................

17 tháng 8 2017

\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x+28=28\)

\(\Leftrightarrow3x^2+26x=0\)\(\Leftrightarrow x\left(3x+26\right)=0\)

Suy ra x=0 hoặc x=-26/3

18 tháng 9 2020

cho mk hỏi ngu tí là 6x^2 ở đâu thế ạ

17 tháng 10 2021

mình chịu na

8 tháng 7 2016

x=3

b,Dat an 2x^2-3x-1=a la dc

8 tháng 7 2016

a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)

Thế vào rồi giải tiếp em nhé.