Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Với $m=1$ thì pt trở thành:
\(x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\)
b)
Để pt có hai nghiệm $x_1,x_2$ (không tính phân biệt ) thì:
\(\Delta'=m^2-(m^2-m+1)\geq 0\)
\(\Leftrightarrow m-1\geq 0\Leftrightarrow m\geq 1\)
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-m+1\end{matrix}\right.\)
Khi đó:
\(A=x_1x_2-x_1-x_2=x_1x_2-(x_1+x_2)\)
\(=m^2-m+1-2m=m^2-3m+1\)
\(=(m-\frac{3}{2})^2-\frac{5}{4}\)
Vì \((m-\frac{3}{2})^2\geq 0, \forall m\geq 1\Rightarrow A\geq -\frac{5}{4}\) hay \(A_{\min}=-\frac{5}{4}\)
Dấu bằng xảy ra tại \(m-\frac{3}{2}=0\Leftrightarrow m=\frac{3}{2}\) (thỏa mãn)
Vậy \(m=\frac{3}{2}\)
`a)` Thay `m = 1` vào ptr:
`x^2 - 2 . 1 x + 1^2 - 1 + 1 = 0`
`<=>x^2 - 2x + 1 = 0`
`<=>(x - 1)^2=0`
`<=>x-1=0<=>x=1`
___________________________________________
`b)` Ptr có `2` nghiệm pb
`<=>\Delta' > 0`
`<=>b'^2-ac > 0`
`<=>(-m)^2-(m^2-m+1) > 0`
`<=>m^2-m^2+m-1 > 0`
`<=>m > 1`
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
\(a\left(ax+1\right)\text{=}x\left(a+2\right)+2\)
\(\Leftrightarrow a^2x-ax-2x\text{=}2-a\)
\(\Leftrightarrow x\left(a^2-a-2\right)\text{=}2-a\)
\(\Leftrightarrow x\left(a+1\right)\left(a-2\right)\text{=}2-a\)
\(\Leftrightarrow x\text{=}\dfrac{-1}{a+1}\)
em mới có lớp 8 nên là em không chắc nữa