Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
Điều kiện xác định tự làm nha b.
Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)
\(\Rightarrow a^2+4b^2=10-3x\)
Từ đây ta có pt trở thành
\(3a-6b+4ab-a^2-4b^2=0\)
\(\left(a-2b\right)\left(a-2b-3\right)=0\)
Tới đây đơn giản rồi b làm tiếp nhé
91 nhé
đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)
bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi
câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi
c1 cậu đặt cái trong căn =a
=>pt<=> a^2-2x=2xa-a
c2 cậu đưa về dang a^2=b^2
bài 2 nhé
đặt \(a=\sqrt{x+2}\)
ta có pt<=>
\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)
\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)
\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)
Mình khẳng định với bạn là đề bài sai bởi vì x2+2x+3 k đưa về dang hằng đẳng thức đc cũng như quy tách ra để tính đc
\(Dat:\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{x+2}=b\end{matrix}\right.\Rightarrow a+b=1+ab\Rightarrow ab-a-b+1=a\left(b-1\right)-\left(b-1\right)=0\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
ĐK: \(-2\le x\le3\)
PT \(\Leftrightarrow\sqrt{3-x}=3-\sqrt{x+2}\)
\(\Leftrightarrow3-x=9+x+2-6\sqrt{x+2}\)
\(\Leftrightarrow6\sqrt{x+2}=2x+8\)
\(\Leftrightarrow36x+72=4x^2+32x+64\)
\(\Leftrightarrow4x^2-4x-8=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (TM)
Vậy phương trình có tập nghiệm \(S=\left\{-1;2\right\}\)
\(=\sqrt{3-x}=3-\sqrt{x+2}\Leftrightarrow3-x=9-6\sqrt{x+2}+x+2\)
\(\Leftrightarrow2x+8-6\sqrt{x+2}=0\Leftrightarrow x+4-3\sqrt{x+2}\)
\(\Leftrightarrow\left(x+2\right)-2.\frac{3}{2}\sqrt{x+2}+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-\frac{3}{2}\right)^2=\frac{1}{4}\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}-\frac{3}{4}=\frac{1}{2}\\\sqrt{x+2}-\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\)