K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

Căn bậc 3 

Phương trình vô tỉ

Khóc lắm bạn ơi *_*

20 tháng 8 2017

ĐKXĐ: \(x\ge\frac{-1}{2}\)

\(\sqrt{2x+1}+\sqrt[3]{3x-4}=5\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(\sqrt[3]{3x-4}-2\right)=0\)

\(\Leftrightarrow\frac{2x+1-9}{\sqrt{2x+1}+3}+\frac{3x-4-8}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}=0\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{3\left(x-4\right)}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}\)\(\Leftrightarrow\left(x-4\right)\left[\frac{2}{\sqrt{2x+1}+3}+\frac{3}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}\right]=0\Leftrightarrow x-4=0\)

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

7 tháng 8 2017

am-gm cái VT(đánh giá từ TBN sang TBC) 

2 tháng 9 2020

\(ĐKXĐ:x\ge\frac{1}{2}\)

Áp dụng BĐT AM - GM cho các số dương ta có :

\(\sqrt{2x-1}=\sqrt{1.\left(2x-1\right)}\le\frac{1+2x-1}{2}=x\)

\(\sqrt[4]{4x-3}=\sqrt[4]{1.1.1.\left(4x-3\right)}\le\frac{1+1+1+4x-3}{4}=x\)

\(\sqrt[6]{6x-5}=\sqrt[6]{1.1.1.1.1.\left(6x-5\right)}\le\frac{1+1+1+1+1+6x-5}{6}=x\)

\(\Rightarrow\sqrt{2x-1}+\sqrt[4]{4x-3}+\sqrt[6]{6x-5}\le3x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )

Vậy pt có nghiệm duy nhất \(x=1\)

7 tháng 8 2017

giúp mk bài này với

7 tháng 8 2017

câu 2 có thể là am-gm 2016 số 

9 tháng 9 2017

c1 cậu đặt cái trong căn =a

=>pt<=> a^2-2x=2xa-a

c2 cậu đưa về dang a^2=b^2

9 tháng 9 2017

bài 2 nhé 

đặt \(a=\sqrt{x+2}\)

ta có pt<=> 

\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)

\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)

\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)

20 tháng 8 2017

Điều kiện xác định tự làm nha b.

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)

\(\Rightarrow a^2+4b^2=10-3x\)

Từ đây ta có pt trở thành

\(3a-6b+4ab-a^2-4b^2=0\)

\(\left(a-2b\right)\left(a-2b-3\right)=0\)

Tới đây đơn giản rồi b làm tiếp nhé

20 tháng 8 2017

91 nhé

đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)

bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi

NV
27 tháng 6 2019

Bạn coi lại đề câu a và câu c

b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)

Phương trình trở thhành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)

\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)

\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))

\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)

\(\Leftrightarrow x^2=16\Rightarrow x=4\)

27 tháng 6 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking

Giúp mk vs!khocroi

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ