K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 10 2020

ĐKXĐ: ...

\(tanx-\frac{1}{tanx}=\frac{3}{2}\)

\(\Leftrightarrow tan^2x-\frac{3}{2}tanx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=2\\tanx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
14 tháng 8 2020

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\frac{k\pi}{2}\)

\(sinx+cosx=\frac{2cosx}{sinx}-\frac{2sinx}{cosx}\)

\(\Leftrightarrow sinx+cosx=\frac{2\left(cos^2x-sin^2x\right)}{sinx.cosx}\)

\(\Leftrightarrow sinx+cosx=\frac{2\left(sinx+cosx\right)\left(cosx-sinx\right)}{sinx.cosx}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow...\\\frac{2\left(cosx-sinx\right)}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow2\left(cosx-sinx\right)=sinx.cosx\)

Đặt \(cosx-sinx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)

\(\Rightarrow2t=\frac{1-t^2}{2}\Leftrightarrow t^2-4t-1=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2+\sqrt{5}\left(l\right)\\t=2-\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow cosx-sinx=2-\sqrt{5}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{5}-2}{\sqrt{2}}=sina\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=a+k2\pi\\x-\frac{\pi}{4}=\pi-a+k2\pi\end{matrix}\right.\)

31 tháng 5 2021

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

4 tháng 8 2020

\(DKXD:\left\{{}\begin{matrix}\sin x\ne0\\\cos x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne\pi+k\pi\\x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\tan x+\frac{\sqrt{3}}{\tan x}-\left(\sqrt{3}+1\right)=0\)

\(\Leftrightarrow\tan^2x-\left(\sqrt{3}+1\right)\tan x+\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\tan x=1\\\tan x=\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\) (t/m)

27 tháng 7 2019
https://i.imgur.com/EkFiJjR.jpg
27 tháng 7 2019
https://i.imgur.com/bDYRFb9.jpg
NV
25 tháng 7 2020

c/

\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)

\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

d/ ĐKXĐ: ...

\(\Leftrightarrow cot^22x+3.cot2x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)

NV
25 tháng 7 2020

a/

\(\Leftrightarrow2cos^2x-1+cosx+1=0\)

\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

b/ ĐKXĐ: ...

\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)

\(\Leftrightarrow tan^2x+1=2tanx\)

\(\Leftrightarrow tan^2x-2tanx+1=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

NV
16 tháng 10 2019

Đề là \(tanx=cotx+\frac{1}{cosx}\) hay \(tanx=\frac{cotx+1}{cosx}\) bạn?

16 tháng 10 2019

là đề đầu tiên mà bn hỏi đó b

14 tháng 9 2021

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

14 tháng 9 2021

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)