Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(5x+1\right)^2=\left(3x-2\right)^2\)
<=> \(\left(5x+1\right)^2-\left(3x-2\right)^2=0\)
<=> \(\left(5x+1-3x+2\right)\left(5x+1+3x-2\right)=0\)
<=> \(\left(2x+3\right)\left(8x-3\right)=0\)
<=> \(\orbr{\begin{cases}2x+3=0\\8x-3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-\frac{3}{2}\\x=\frac{3}{8}\end{cases}}\)
a )
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Rightarrow\left(5x\right)^2+2.5x.1+1=\left(3x\right)^2-2.3x.2+2^2\)
\(\Rightarrow25x^2+10x+1=9x^2-12x+4\)
\(\Rightarrow25x^2+10x+1-9x^2+12x-4=0\)
\(\Rightarrow16x^2+22x-3=0\)
\(\Rightarrow\left(4x\right)^2+2.4x.2,75+\left(2,75\right)^2-10,5625=0\)
\(\Rightarrow\left(4x+2,75\right)^2=10,5625\)
\(\Rightarrow4x+2,75=3,25\)
\(\Rightarrow4x=0,5\)
\(\Rightarrow x=0,125\)
Vậy \(x=0,125\)
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
a)\(x^3+\left(-x^2+4x^2\right)+\left(-4x+5x\right)-5=\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(x^2+4x+5\right)=\left(x-1\right)\left[\left(x+2\right)^2+1\right]=0\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=1\\\left(x+2\right)^2+1=0.Vo.N_o\end{matrix}\right.\) Vậy x=1 là nghiệm duy nhất
Có : \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)=24\)
\(\Leftrightarrow\) \(\left(x^2-x\right)\left(x^2-x-2\right)=24\)
Đặt \(y=x^2-x\)
\(\Rightarrow\) \(y\left(y-2\right)=24\)
\(\Leftrightarrow\) \(y^2-2y-24=0\)
\(\Leftrightarrow\) \(\left(y+4\right)\left(y-6\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{matrix}y=-4\\y=6\end{matrix}\right.\)
Với \(y=-4\) thì \(x^2-x=-4\)
\(\Rightarrow\) \(x^2-x+4=0\) vô nghiệm
Với \(y=6\) thì \(x^2-x=6\)
\(\Rightarrow\) \(x^2-x-6=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Vậy \(S=\left\{-2;3\right\}\)
a) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)
<=> \(3x-7=x\left(3x-7\right)\)
<=> \(\left(3x-7\right)-x\left(3x-7\right)=0\)
<=> \(\left(3x-7\right)\left(1-x\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)
Vậy S = { 7/3; 1}
b) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
<=> \(\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-7x+12\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
<=> \(\left(3x-1\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\)
<=> \(\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
<=> x = 1/3 hoặc x = 3 hoặc x = 4.
Vậy S = { 1/3; 3; 4}
Áp dụng BĐT\(a^3+b^3+c^3=3abc\) ta có (cái này bạn phải cm mới được áp dụng\(\left(x^2+3x-4\right)^3+\left(3x^3+7x+4\right)^3-\left(4x^2+10x\right)^3=-3\left(x^2+3x-4\right)\left(3x^3+7x+4\right)\left(4x^2+10x\right)=0\)
Sau đó bạn chia 3 trường hợp ra rồi giải pt tìm x
k mk nha
ko vt lại đề
<=> x3-6x2+12x-8+9x2-1=x3+3x2+3x+1
<=>12x-9=3x+1
<=>9x-10=0
<=>x=10/9
\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
\(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)
\(\Leftrightarrow x^3+3x^2+12x-9=x^3+3x^2+3x+1\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{10}{9}\right\}\)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a