K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Bài làm:

Ta có: \(\left(x^2+2\right)=\left(2x+1\right)\sqrt{x}\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2x+1\right)^2x\)

\(\Leftrightarrow x^4+4x^2+4=\left(4x^2+4x+1\right)x\)

\(\Leftrightarrow x^4-4x^3+4-x=0\)

\(\Leftrightarrow x^3\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

24 tháng 8 2020

Cho mk bổ sung cái đk là: \(x\ge0\) nhé:)

24 tháng 7 2019

ĐKXĐ : x > 2

Ta có \(\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+x-6}\right)=5\)

\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{\left(x+3\right)\left(x-2\right)}\right)=5\)

Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\left(a>0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3-x+2=5\) và \(a\ne b\)

Pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

        \(\Leftrightarrow\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)

        \(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)

      \(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(1-b\right)=0\)

       \(\Leftrightarrow a=b\left(h\right)a=1\left(h\right)b=1\)                                     (h) là hoặc nhé

*Với a = b (Loại do a khác b)

*Với \(a=1\Rightarrow\sqrt{x+3}=1\)

                    \(\Leftrightarrow x+3=1\)

                    \(\Leftrightarrow x=-2\)(Loại do ko thỏa mãn ĐKXĐ)

*Với \(b=1\Rightarrow\sqrt{x-2}=1\)

                    \(\Leftrightarrow x-2=1\)

                    \(\Leftrightarrow x=3\left(Tm\cdotĐKXĐ\right)\)

Vậy pt có nghiệm duy nhất x = 3

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

5 tháng 10 2018

ĐKXĐ: Bạn tự làm nha 

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)

\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)

\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)