Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:........
\(\Leftrightarrow2x-2\sqrt{5x}+8-4\sqrt{x-1}=0\)
\(\Leftrightarrow x+5-2\sqrt{5x}+x+3-4\sqrt{x-1}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)^2-20x}{x+5+2\sqrt{5x}}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}=0\)
\(\Leftrightarrow\frac{\left(x-5\right)^2}{x+5+2\sqrt{5x}}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}=0\)
\(\Leftrightarrow x=5\)
*\(\dfrac{x-1}{x+2}\)-\(\dfrac{x}{x+2}\)=\(\dfrac{5x-2}{4-x^2}\).ĐKXĐ: x\(\ne\pm2\)
<=>\(\dfrac{\left(x-1\right)\left(2-x\right)}{4-x^2}\)-\(\dfrac{x\left(2-x\right)}{4-x^2}\)=\(\dfrac{5x-2}{4-x^2}\)
=>2x-\(x^2\)-2+x-2x+\(x^2\)=5x-2
<=>x-2=5x-2
<=>x-5x=2-2
<=>-4x=0
<=> x = 0(TM)
Vậy phương trình có tập nghiệm là S={0}
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
Ta có : \(3x^2+5x+14=5\left(x+1\right)\sqrt{4x-1}\)
\(\Leftrightarrow\left(3x^2+5x+14\right)^2=\left[5\left(x+1\right)\sqrt{4x-1}\right]^2\)
\(\Leftrightarrow9x^4+25x^2+196+2\left(3x^2.5x+5x.14+3x^2.14\right)=25.\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+25x^2+196+2\left(15x^3+70x+42x^2\right)=25\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+25x^2+196+30x^3+140x+84x^2=25\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=25\left(x^2+2x+1\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+200x^2+100x-25x^2-50x-25\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+175x^2+50x-25\)
Đến đây chuyển vế sang giải nhé mệt quá
giải pt:
a) \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b) \(2x^4+8=4\sqrt{4+x^4}+4\sqrt{x^4-4}\)
a) \(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\)
\(\Leftrightarrow15x-9x+6=45-10x+25\)
\(\Leftrightarrow15x-9x+10x=45+25-6\)
\(\Leftrightarrow16x=64\)
\(\Leftrightarrow x=4\)
b) \(x^2-9+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\x+7=0\Leftrightarrow x=-7\end{matrix}\right.\)
c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)
\(\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)
\(\Leftrightarrow x+4+x^2-4x+2x-8=5x-4\)
\(\Leftrightarrow x^2+x-4x+2x-5x=-4+8-4\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\Leftrightarrow x=6\end{matrix}\right.\)
a) 15x - 3(3x - 2) = 45 - 5(2x - 5)
\(\Leftrightarrow\) 15x - 9x + 6 = 45 - 10x + 25
\(\Leftrightarrow\) 6x + 10x = 70 - 6
\(\Leftrightarrow\) 16x = 64
\(\Leftrightarrow\) x = 4
Vậy.......................
b) x2 - 9 + 4(x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 3) + 4(x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 3 + 4) = 0
\(\Leftrightarrow\) (x - 3)(x + 7) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)
Vậy........................
c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)
\(\Leftrightarrow\) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\) (đk: x\(\ne\pm\)4)
\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}+\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x-4}{\left(x+4\right)\left(x-4\right)}\)
\(\Leftrightarrow\) x + 4 + x2 - 4x + 2x - 8 = 5x - 4
\(\Leftrightarrow\) x2 - x - 5x - 4 + 4 = 0
\(\Leftrightarrow\) x2 - 6x = 0
\(\Leftrightarrow\) x(x - 6) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmđk\right)\\x=6\left(tmđk\right)\end{matrix}\right.\)
Vậy...............
\(\frac{-5}{9}x+1=\frac{2}{3}x-10\)
\(\frac{-5}{9}x+\frac{9}{9}=\frac{6}{9}x-\frac{90}{9}\)
\(-5x+9=6x-90\)
\(-5x-6x=-90-9\)
\(-11x=-99\)
\(x=\frac{-99}{-11}=9\)
b. \(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)
\(\frac{x-22}{8}-1+\frac{x-21}{9}-1+\frac{x-20}{10}-1+\frac{x-19}{11}-1=0\)
\(\frac{x-30}{8}+\frac{x-30}{9}+\frac{x-30}{10}+\frac{x-30}{11}=0\)
\(\left(x-30\right)\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)=0\)
x=30
Chúc bạn học tốt!!
- Với \(x=0\) ko phải nghiệm
- Với \(x< 0\Rightarrow VT>0\) pt vô nghiệm
- Với \(x>0\) chia 2 vế cho x ta được:
\(x+\frac{1}{x}-5+\sqrt{x^2+\frac{1}{x^2}}=0\)
Đặt \(x+\frac{1}{x}=t\ge2\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Leftrightarrow t-5=\sqrt{t^2-2}\Leftrightarrow\sqrt{t^2-2}=5-t\) (\(t\le5\))
\(\Leftrightarrow t^2-2=25-10t+t^2\Rightarrow t=\frac{27}{10}\)
\(\Rightarrow x+\frac{1}{x}=\frac{27}{10}\Leftrightarrow x^2-\frac{27}{10}x+1=0\)
\(\Leftrightarrow...\)