\(\sqrt{x^2+x+2}=\frac{3x^2+3x+2}{3x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(\sqrt{x^2+x+2}=\frac{3x^2+3x+2}{3x+1}\)

Đk:.... tự xác định :v

\(\Leftrightarrow\sqrt{x^2+x+2}-2=\frac{3x^2+3x+2}{3x+1}-2\)

\(\Leftrightarrow\frac{x^2+x+2-4}{\sqrt{x^2+x+2}+2}=\frac{3x^2-3x}{3x+1}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{\sqrt{x^2+x+2}+2}-\frac{3x\left(x-1\right)}{3x+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{3x}{3x+1}\right)=0\)

Dễ thấy: \(\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{3x}{3x+1}< 0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

6 tháng 7 2017

Thắng ơi @@
Bài này liên hợp kép kìa .
Trong cái kia vẫn còn nghiệm x=1 nữa !!!

9 tháng 5 2018

a)X=2,81376107

b)X=2

ĐK: \(x\ge\frac{2}{5}\) 

Ta có \(\sqrt{5x^3+3x^2+3x-2}+\frac{1}{2}=\frac{x^2}{2}+3x\) 

<=> \(\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=\frac{x^2}{2}+3x-\frac{1}{2}\)  

<=> \(2\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=x^2+6x-1\)

Đặt \(\sqrt{5x-2}=a\left(a\ge0\right),\sqrt{x^2+x+1}=b\left(b\ge0\right)\) 

=> \(a^2+b^2=5x-2+x^2+x+1=x^2+6x+1\) 

Ta có \(2ab=a^2+b^2\) 

<=> \(\left(a-b\right)^2=0\) <=> a=b

Theo cách đặt ta có \(\sqrt{5x-2}=\sqrt{x^2+x+1}\)

=> \(5x-2=x^2+x+1\) 

<=> \(\left(x-3\right)\left(x-1\right)=0\) 

=> \(\orbr{\begin{cases}x=3\left(TMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\) 

Vậy

Xin lỗi mk nhầm phải là 

\(a^2+b^2=x^2+6x-1\) 

Sorry

24 tháng 8 2019

a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)

Đặt \(2x^2+3x=a\left(a\ge-9\right)\)

=> \(5\sqrt{a+9}=a+3\)

<=> \(25\left(a+9\right)=a^2+6a+9\)

<=> \(25a+225=a^2+6a+9\)

<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)

<=> 0= \(a^2-27a+8a-216\)

<=> \(\left(a-27\right)\left(a+8\right)=0\)

=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)

b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)

<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)

<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)

<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)

<=> \(x^3\left(8-x^2\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có nghiệm x=0

24 tháng 8 2019

d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))

<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)

Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)

\(a-a^2+6=0\)

<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)

<=> \(\left(a-3\right)\left(a+2\right)=0\)

=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))

<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)

<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)

Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)

5 tháng 11 2018

ĐKXĐ : x\(\ge0\)

ADBĐT BCS ta được

\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)

\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\))    (1)

Do x\(\ge0\)nên ADBĐT Cauchy ta được:

\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)

Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)

Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)

6 tháng 11 2018

3) ĐKXĐ \(-1\le x\le1\)

Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)

\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)

Đặt \(\sqrt{1-x^2}=a\ge0\)

Khi đó phương trình (2) trở thành: 

\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)

\(\Leftrightarrow a^4+14a^2+49=32+32a\)

\(\Leftrightarrow a^4+14a^2-32a+17=0\)

\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)

\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

hay \(\sqrt{1-x^2}=1\)

\(\Leftrightarrow x=0\)(thỏa mãn)

19 tháng 11 2015

ĐKXĐ là x\(\ge\frac{2}{3}\)

\(\frac{x^2}{\sqrt{3x-2}}-\frac{3x-2}{\sqrt{3x-2}}=1-x\)

<=>x^2-3x+2=(1-x)\(\sqrt{3x-2}\)