Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)
\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-4x+1=x+1\)
\(\Leftrightarrow x^2-4x-x=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện
Vậy x=0 hoặc x=5
2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)
Đk: x>=3 hoặc x=1
pt (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )
<=> x-1=0
<=> x=1 ( thỏa mãn điều kiện)
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)
ĐK: \(x\ge-\frac{1}{3}\)
\(\Leftrightarrow5x^2+4x-9-\left(4x\sqrt{x^2+x+2}-8\right)-\left(4\sqrt{3x+1}-8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{x^2\left(x^2+x+2\right)-4}{x\sqrt{x^2+x+2}+2}-4\frac{3x+1-4}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{\left(x-1\right)\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+9-4\frac{\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3}{\sqrt{3x+1}+2}\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(ĐKXĐ:x\ge\frac{-1}{3}\)
\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)
\(\Leftrightarrow\left(x^2+x+2-4x\sqrt{x^2+x+2}+4x\right)\)\(+\left(3x+1-4\sqrt{3x+1}+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+x+2}-2x\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=2x\\\sqrt{3x+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x^2+x+2=4x\\3x+1=4\end{cases}}\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là x = 1
a/ \(\Delta=\left(3\sqrt{3}\right)^2-4.4\left(-6\right)=123\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3\sqrt{3}+\sqrt{123}}{8}\\x_2=\frac{3\sqrt{3}-\sqrt{123}}{8}\end{matrix}\right.\)
b/ \(\Delta=9-4\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)=25\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\x_2=\frac{3-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\end{matrix}\right.\)
\(a)4x^2-3\sqrt{3}x-6=0\)
Có: \(a=4;b=-3\sqrt{3};c=-6\)
\(\Delta=b^2-4ac\\ =\left(-3\sqrt{3}\right)^2-4.4.\left(-6\right)\\ =123>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)+\sqrt{123}}{2.4}=\frac{3\sqrt{3}+\sqrt{123}}{8}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)-\sqrt{123}}{2.4}=\frac{3-\sqrt{123}}{8}\)
\(b)\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)
Có: \(a=1-\sqrt{5};b=-3;c=\sqrt{5}+1\)
\(\Delta=b^2-4ac\\ =\left(-3\right)^2-4.\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\\ =25>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\ x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\)
Giải PT
a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)
\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(12\sqrt{x} = 3\)
\(\Leftrightarrow\) \(\sqrt{x} = 4 \)
\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)
\(\Leftrightarrow\) \(x=16\)
b) \(\sqrt{x^2-2x-1} - 3 =0\)
\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)
\(\Leftrightarrow\) \(|x-1|=3\)
* \(x-1=3\)
\(\Leftrightarrow\) \(x=4\)
* \(-x-1=3\)
\(\Leftrightarrow\) \(-x=4\)
\(\Leftrightarrow\) \(x=-4\)
c) \(\sqrt{4x^2+4x+1} - x = 3\)
<=> \(\sqrt{(2x+1)^2} = 3+x\)
<=> \(|2x+1|=3+x\)
* \(2x+1=3+x\)
<=> \(2x-x=3-1\)
<=> \(x=2\)
* \(-2x+1=3+x\)
<=> \(-2x-x = 3-1\)
<=> \(-3x=2\)
<=> \(x=\dfrac{-2}{3}\)
d) \(\sqrt{x-1} = x-3\)
<=> \(\sqrt{(x-1)^2} = (x-3)^2\)
<=> \(|x-1| = x^2-2.x.3+3^2\)
<=> \(|x-1| = x-6x+9\)
<=> \(|x-1| = -5x+9\)
* \(x-1= -5x+9\)
<=> \(x+5x = 9+1\)
<=> \(6x=10\)
<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)
* \(-x-1 = -5x+9\)
<=> \(-x+5x = 9+1\)
<=> \(4x = 10\)
<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)
a/\(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{x^2}{\sqrt{5}}=\sqrt{20}\Leftrightarrow x^2=\sqrt{100}\Leftrightarrow x=\sqrt{10}\)
b/ \(\sqrt{\left(x-3\right)^2}-9=0\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)
Vậy.......
c/ \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy.......
Vì \(\sqrt{x^2+1}\)\(\ge\) 0
nên x2+1 \(\ge\)0
mà x2+1 > 0
nên \(\sqrt{4x^2-4x+5}=0\)
\(\Rightarrow\)4x2-4x+5 =0
mà 4x2-4x+1+4
=(2x-1)2+4>0
\(\Rightarrow\)Phương trình vô nghiệm
Bạn ơi, bài này vô nghiệm nhé . Có cần Milky Way giải rõ không ? Rất sẵn lòng ^^