\(\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}=\frac{x-1}{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

bắng 1/3 nhé bạn

1 tháng 8 2016

cậu giải ra giúp mk đi

13 tháng 8 2016

Điều kiện xác định : \(\hept{\begin{cases}2\ge\frac{1}{\sqrt{2-x}}\\x< 2\\x\ge0\end{cases}}\) \(\Leftrightarrow0\le x\le\frac{7}{4}\)

Ta có : \(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)

\(\Rightarrow2-\frac{1}{\sqrt{2-x}}=x^2\)

\(\Leftrightarrow x^2\sqrt{2-x}-2\sqrt{2-x}+1=0\)

Đặt \(t=\sqrt{2-x},t\ge0\Rightarrow x=2-t^2\)

Ta có : \(\left(2-t^2\right)^2.t-2t+1=0\)

\(\Leftrightarrow t\left[\left(2-t^2\right)^2-1\right]-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(2-t^2-1\right)\left(2-t^2+1\right)-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(t-1\right)\left(t+1\right)\left(t^2-3\right)-\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left[t\left(t+1\right)\left(t^2-3\right)-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t\left(t+1\right)\left(t^2-3\right)-1=0\end{cases}}\)

  • Nếu t - 1 = 0 => t = 1 ta có  \(x=2-1^2=1\)(tmđk)
  • Nếu \(t\left(t+1\right)\left(t^2-3\right)-1=0\) , từ điều kiện \(0\le x\le\frac{7}{4}\)ta có \(t\left(t+1\right)\left(t^2-3\right)-1\le-\frac{179}{256}< 0\)=> pt này vô nghiệm.

Vậy pt có nghiệm x = 1

13 tháng 8 2016

toán mấy ạ

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy 

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1&gt;0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

9 tháng 9 2017

đk tự giải nhé 

với x tjỏa mãn đk ta có 

\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)

đặt \(\sqrt{x^3+3x}=a\)

ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)

\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)

\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)

đến đây tự làm nhé

5 tháng 11 2017

Từ 1 đến 9 có số lượt chữ số là:

( 9 - 1 ) : 1 + 1 x 1 = 9 ( chữ số )

Từ 10 đến 99 có số lượt chữ số là:

[( 99 - 10 ) : 1 + 1 ] x 2 = 180 ( chữ số )

Từ 1 đến 100 có số lượt chữ số là:

180 + 9 + 3 = 192 ( chữ số )

Có 11 lượt chữ số 7 : 7;17;27;37;47;57;67;77;87;97

umgr hộ nha

xinlooix mình trả lời nhầm

NV
12 tháng 11 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow\frac{4x+3}{x+1}=9\Leftrightarrow4x+3=9\left(x+1\right)\)

\(\Leftrightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)

b/ ĐKXĐ: \(x\ge0\)

Nhân cả tử và mẫu của từng số hạng với biểu thức liên hợp và rút gọn ra được:

\(\sqrt{x+5}-\sqrt{x+4}+\sqrt{x+4}-\sqrt{x+3}+...+\sqrt{x+1}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+5}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+5}=1+\sqrt{x}\)

\(\Leftrightarrow x+5=x+1+2\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)

c/ \(\Leftrightarrow2xy-6x-5y+15=33\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Đến đây là pt ước số đơn giản rồi

12 tháng 11 2019
https://i.imgur.com/foHbKBu.jpg