\(\sqrt{x-2\sqrt{4-x}}+\sqrt{x}=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

=4 nha ko phải là = 44

1 tháng 10 2020

382+28=

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

6 tháng 7 2017

mũ 4 2 vế lên rút gọn là thấy ngay vô nghijem :v

6 tháng 7 2017

Cần gì phải nâng bậc 4 ^

Đặt biến
\(\left(x+1,x\right)=\left(a,b\right) \\ a+b=2\sqrt[4]{a^4+b^4}\ge a+b \\ \)
Dấu = => \(x=x+1=>Vo.nghiem\)

25 tháng 7 2018

ĐKXĐ: \(x>4\)

\(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Leftrightarrow\)\((\dfrac{\sqrt{x+5}}{\sqrt{x-4}})^2=(\dfrac{\sqrt{x-2}}{\sqrt{x+3}})^2\)

\(\Leftrightarrow\dfrac{x+5}{x-4}=\dfrac{x-2}{x+3}\)

\(\Leftrightarrow\dfrac{x+5}{x-4}-\dfrac{x-2}{x+3}=0\)

\(\Leftrightarrow\dfrac{(x+5)\left(x+3\right)-\left(x-2\right)\left(x-4\right)}{(x-4)\left(x+3\right)}=0\)

\(\Leftrightarrow(x+5)\left(x+3\right)-\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow x^2+8x+15-x^2+6x-8=0\)

\(\Leftrightarrow14x-7=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

6 tháng 7 2017

2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)

\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)

\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)

\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)

\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)

\(\Leftrightarrow46\cdot\left|x\right|=529+9\)

\(\Leftrightarrow49\cdot\left|x\right|=538\)

\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)

Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)

3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)

\(\Leftrightarrow14-x=x^2-5x+4\)

\(\Leftrightarrow14-x-x^2+5x-4=0\)

\(\Leftrightarrow10+4x-x^2=0\)

\(\Leftrightarrow-x^2+4x+10=0\)

\(\Leftrightarrow x^2-4x-10=0\)

\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)

sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)

6 tháng 7 2017

3. \(\sqrt{14-x}-\sqrt{x-4}=\sqrt{x-1}\)

20 tháng 8 2017

Điều kiện xác định tự làm nha b.

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)

\(\Rightarrow a^2+4b^2=10-3x\)

Từ đây ta có pt trở thành

\(3a-6b+4ab-a^2-4b^2=0\)

\(\left(a-2b\right)\left(a-2b-3\right)=0\)

Tới đây đơn giản rồi b làm tiếp nhé

20 tháng 8 2017

91 nhé

đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)

bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi

5 tháng 6 2018

a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)

\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)

\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)

Làm nốt

5 tháng 6 2018

b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

Làm nốt

11 tháng 6 2018

a/ \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)

\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=4\)

\(\Leftrightarrow x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}=4\)

Làm nốt

11 tháng 6 2018

b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)