K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

5(+x)-4=24

21 tháng 1 2018

8

NV
5 tháng 3 2020

a/ \(\Rightarrow2x^2-3x-11=x^2-1\)

\(\Leftrightarrow x^2-3x-10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Thay 2 nghiệm vào cả 2 căn thức thấy đều xác định

Vậy nghiệm của pt là ...

b/ \(\left\{{}\begin{matrix}x\ge-1\\2x^2+3x-5=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-6=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=2\\x=-3\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow x=2\)

NV
5 tháng 3 2020

c/

\(\Leftrightarrow x^2+4x+4=3x^2-5x+14\)

\(\Leftrightarrow2x^2-9x+10=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{5}{2}\end{matrix}\right.\)

d/

\(\Leftrightarrow\left\{{}\begin{matrix}-x-9\ge0\\\left(x-1\right)\left(2x-3\right)=\left(-x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\2x^2-5x+3=x^2+18x+81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\x^2-23x-78=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=26\left(ktm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

30 tháng 11 2019

Violympic toán 9

1 tháng 12 2019

Violympic toán 9

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

28 tháng 3 2019

ĐKXĐ x ; y > 0

(1) \(\Rightarrow\left(y-x\right)\left(\frac{1}{\sqrt{x}y}+x+2xy\right)=0\)

\(\Rightarrow x=y\)

\(\Rightarrow...\)

#Kaito#