Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\orbr{\begin{cases}x\ne-3\\x\ne3\end{cases}}\)
\(\frac{x+3}{x-3}+\frac{36}{9-x^2}=\frac{x-3}{x+3}\)
\(\Rightarrow\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{-\left(36\right)}{x^2-9}-\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow\left(x+3\right)^2-36-\left(x-3\right)^2=0\)
\(\Leftrightarrow x^2+6x+9-36-x^2+6x-9=0\)
\(\Leftrightarrow12x-36=0\Leftrightarrow x=3\)(LOẠI)
vậy tập nghiệm của phương trình là : S = rỗng
tk nka !!
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
\(\frac{36\left(x-6\right)2}{\left(x^2-36\right)2}+\frac{36\left(x+6\right).2}{\left(x^2-36\right)2}=\frac{9\left(x^2-36\right)}{2\left(x^2-36\right)}\)
=>\(\frac{-432+72x}{\left(x^2-36\right)2}+\frac{432+72x}{\left(x^2-36\right)2}=\frac{-324+9x^2}{2\left(x^2-36\right)}\)
=>\(-432+72x+432+72x=-324+9x^2\)
=>\(-9x^2+144x+324=0=>\left(x-18\right)\left(x+2\right)=0\)
=>\(\left\{\begin{matrix}x-18=0\\x+2=0\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=18\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S={-2;18}
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
a,\(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x+1}.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)\(\Leftrightarrow\left(\frac{x^2-x+x^2+x}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-90=0\)\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}-10\right)\left(\frac{2x^2}{x^2-1}+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2}{x^2-1}=10\\\frac{2x^2}{x^2-1}=-9\end{cases}\Leftrightarrow......}\)
b,Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\Rightarrow ab=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x^2-4}{x^2-1}\)
Từ đó ta có phương trình:\(20a^2-5b^2+48ab=0\Leftrightarrow20a^2-2ab-5b^2+50ab=0\)
\(\Leftrightarrow2a\left(10a-b\right)+5b\left(10a-b\right)=0\Leftrightarrow\left(2a+5b\right)\left(10a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=-5b\\10a=b\end{cases}}\)
TH1:\(2a=-5b\Leftrightarrow\frac{2\left(x-2\right)}{x+1}=\frac{-5\left(x+2\right)}{x-1}\)\(\Rightarrow2\left(x-2\right)\left(x-1\right)=-5\left(x+2\right)\left(x+1\right)\)\(\Leftrightarrow2x^2-6x+4=-5x^2-15x-10\)\(\Leftrightarrow7x^2+9x+14=0\)
\(\Leftrightarrow7\left(x^2+\frac{9}{7}x+2\right)=0\Leftrightarrow7\left(x^2+2.\frac{9}{14}+\frac{81}{196}\right)+\frac{311}{28}=0\)
\(\Leftrightarrow7\left(x+\frac{9}{14}\right)^2+\frac{311}{28}=0\),vô lí
TH2:Tự làm nhé ,tương tự
a) \(\frac{1-2x}{4}-2< \frac{1-5x}{8}+x\)
\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}< \frac{1-5x}{8}+\frac{8x}{8}\)
\(\Leftrightarrow2-4x-16< 1-5x+8x\)
\(\Leftrightarrow-4x-14< 1-3x\)
\(\Leftrightarrow-x< 15\)
\(\Leftrightarrow x>-15\)
Vậy bất phương trình có tập nghiệm là: S ={x| x > -15}
b) \(\frac{1-x}{3}< \frac{x+4}{2}\)
\(\Leftrightarrow2\left(1-x\right)< 3\left(x+4\right)\)
\(\Leftrightarrow2-2x< 3x+12\)
\(\Leftrightarrow-5x< 10\)
\(\Leftrightarrow x>-2\)
Vậy bất phương trình có tập nghiệm là: S ={x| x > -2}
c) \(\frac{2x-3}{2}>\frac{8x-11}{6}\)
\(\Leftrightarrow3\left(2x-3\right)>8x-11\)
\(\Leftrightarrow6x-9>8x-11\)
\(\Leftrightarrow-2x>-2\)
\(\Leftrightarrow x< 1\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 1}
x=-7206932,631
tính = máy tính đó
nhớ tink cho mình nữa nha
\(\frac{90}{x}-\frac{36}{x-6}=2\) MTC = x (x-6) ĐK\(\hept{\begin{cases}x\ne0\\x\ne6\end{cases}}\)
\(\frac{90\left(x-6\right)}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}=\frac{2x\left(x-6\right)}{x\left(x-6\right)}\)
\(\frac{90x-540}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}-\frac{2x^2-12x}{x\left(x-6\right)}=0\)
\(90x-540-36x-2x^2+12x=0\)
\(-2x^2+66x-540=0\)
\(-2x^2+36x+30x-540=0\)
\(-2x\left(x-18\right)+30\left(x-18\right)=0\)
\(\left(x-18\right)\left(-2x+30\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-18=0\\-2x+30=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=18\\x=15\end{cases}}\)
vậy.....
ĐKXĐ: \(x\ne0;\) \(x\ne6\)
\(\frac{90}{x}-\frac{36}{x-6}=2\)
\(\Leftrightarrow\)\(\frac{90\left(x-6\right)}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(\frac{90x-540-36x}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(\frac{54x-540}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(54x-540=2x\left(x-6\right)\)
\(\Leftrightarrow\)\(27x-270=x\left(x-6\right)\)
mk lm đc có vậy thôi. tham khảo nha