K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Có b nào gipus mk với cần gấp gấp :)

NV
26 tháng 7 2020

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)

\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)

Đặt \(\frac{1}{cosx}=t\)

\(\Rightarrow9t^2-13t+4=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

NV
26 tháng 7 2020

d/

\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)

\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^22x+sin2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

NV
1 tháng 9 2020

\(\Leftrightarrow\sqrt{3}sin3x-cos3x=2sin2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=sin2x\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
27 tháng 8 2020

c/

\(\Leftrightarrow2cos4x.sin3x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\2sin3x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\3x=\frac{\pi}{6}+k2\pi\\3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

d/

\(\Leftrightarrow6sinx+3cosx+3=sinx-2cosx+3\)

\(\Leftrightarrow sinx+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

NV
27 tháng 8 2020

a/

\(\Leftrightarrow\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx=sin4x\)

\(\Leftrightarrow sin\left(\frac{\pi}{3}-x\right)=sin4x\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-x+k2\pi\\4x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

b/

\(\Leftrightarrow2sinx.cosx+4sinx.cos^2x-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx+2cos^2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2cos^2x+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{\sqrt{2}}\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

d/

\(\Leftrightarrow2sinx.cosx+1-2sin^2x=1\)

\(\Leftrightarrow2sinx\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

a/

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin5x-\frac{1}{2}cos5x=-1\)

\(\Leftrightarrow sin\left(5x-\frac{\pi}{6}\right)=-1\)

\(\Leftrightarrow5x-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{15}+\frac{k2\pi}{5}\)

b/

\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

1.

\(\Leftrightarrow\left(1-cos6x\right)cos2x+1-cos2x=0\)

\(\Leftrightarrow cos2x-cos2x.cos6x+1-cos2x=0\)

\(\Leftrightarrow\frac{1}{2}\left(cos8x-cos4x\right)-1=0\)

\(\Leftrightarrow2cos^24x-cos4x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-1\\cos4x=\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow4x=\pi+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

NV
4 tháng 10 2020

3.

Đặt \(\frac{x}{6}=t\Rightarrow\frac{1}{4}+cos^22t=\frac{1}{2}sin^23t\)

\(\Leftrightarrow1+4cos^22t=1-cos6t\)

\(\Leftrightarrow cos6t+4cos^22t=0\)

\(\Leftrightarrow4cos^32t+4cos^22t-3cos2t=0\)

\(\Leftrightarrow cos2t\left(4cos^22t+4cos2t-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2t=0\\cos2t=\frac{1}{2}\\cos2t=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{4}+\frac{k\pi}{2}\\t=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}=\frac{\pi}{4}+\frac{k\pi}{2}\\\frac{x}{3}=\frac{\pi}{6}+k\pi\\\frac{x}{3}=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)