Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
Có cách này nhưng không chắc nha,mình mới lớp 7.
ĐK: \(8x^2-3x-1\ge0\) (để yên đi,đừng giải,xấu lắm)
\(4x^2+9x+1+\left(4x-1\right)\left(2x+1-\sqrt{8x^2-3x-1}\right)-\left(4x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow-4x^2+7x+2+\left(4x-1\right)\left[\frac{\left(2x+1\right)^2-8x^2+3x+1}{2x+1+\sqrt{8x^2-3x-1}}\right]=0\)
\(\Leftrightarrow-4x^2+7x+2+\left(4x-1\right)\left(\frac{-4x^2+7x+2}{2x+1+\sqrt{8x^2-3x-1}}\right)=0\)
\(\Leftrightarrow\left(-4x^2+7x+2\right)\left(1+\frac{4x-1}{2x+1+\sqrt{8x^2-3x-1}}\right)=0\)
Giải cái ngoặc nhỏ ta được hai nghiệm x = 2, x = -1/4 (t/m)
Giải tiếp cái ngoặc to thử xem sao (hình như vô nghiệm thì phải)
Thử giải tiếp cái ngoặc to nhé:
\(\frac{4x-1}{2x+1+\sqrt{8x^2-3x-1}}=-1\).Dễ thấy cái mẫu luôn khác 0 với mọi x.
Suy ra \(4x-1=-2x-1-\sqrt{8x^2-3x-1}\)
\(\Leftrightarrow6x=-\sqrt{8x^2-3x-1}\).Thêm đk: \(x\le0\),bình phương hai vế:
\(PT\Leftrightarrow28x^2+3x+1=0\).Phương trình này vô nghiệm.
Ta tìm được hai nghiệm: x = 2 hoặc x = -1/4
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
DKXD :\(x\ge-1\)
Đặt : \(\sqrt{x+1}=a\left(a\ge0\right)\Rightarrow\hept{\begin{cases}3x^2-8x-3=4xa\\a^2=x+1\end{cases}}\)
\(\Rightarrow3x^2-8x-3-4a^2=4xa-4a-4\Leftrightarrow4a^2+4xa+x^2=4x^2-4x+1\)
\(\Leftrightarrow\left(2a+x\right)^2=\left(2x-1\right)^2\)
+> \(2a+x=2x-1\Leftrightarrow2\sqrt{x+1}=x-1\Rightarrow4x+4=x^2-2x+1\left(x\ge1\right)\)
\(\Leftrightarrow x^2-6x-3=0\Rightarrow\orbr{\begin{cases}x=3+2\sqrt{3}\left(tm\right)\\3-2\sqrt{3}\left(ktm\right)\end{cases}}\)
+> \(2a+x=1-2x\Leftrightarrow2\sqrt{x+1}=1-3x\Rightarrow4x+4=9x^2-6x+1\left(x\le\frac{1}{3}\right)\)
\(\Leftrightarrow9x^2-10x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{5+2\sqrt{13}}{9}\left(ktm\right)\\x=\frac{5-2\sqrt{13}}{9}\left(tm\right)\end{cases}}\)
Thử lại
Vậy :
thank nha tuấn