\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 10 2019

ĐKXĐ: \(x\ge-3\)

Đặt \(\sqrt{\frac{x+3}{2}}=a+1\ge0\Rightarrow x+3=2a^2+4a+2\)

Ta được hệ: \(\left\{{}\begin{matrix}2x^2+4x-a=1\\2a^2+4a-x=1\end{matrix}\right.\)

Trừ vế cho vế:

\(2\left(x^2-a^2\right)+4\left(x-a\right)+\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(2x+2a+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=x\\2\left(a+1\right)=-2x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{\frac{x+3}{2}}=x+1\\2\sqrt{\frac{x+3}{2}}=-2x-3\end{matrix}\right.\) \(\Leftrightarrow...\)

2 tháng 10 2019

ta có \(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

⇔4x4+16x3+16x2=\(\frac{x+3}{2}\)

⇔x+3=8x4+32x3+32x2

⇔x+3-8x4-32x3-32x2=0

⇔10x-9x+3-8x4-12x3-20x3+4x2-30x2-6x2=0

⇔(-6x2-9x+3)+(-8x4-12x3+4x2)+(-20x3-30x2+10x)

⇔-3(2x2+3x-1)-4x2(2x2+3x-1)-10x(2x2+3x-1)

⇔-(2x2+3x-1)(4x2+10x+3)

\(\left[{}\begin{matrix}2x^2+3x-1=0\\4x^2+10+3=0\end{matrix}\right.\)

1. 2x2+3x-1=0

⇔x2+\(\frac{3}{2}\)x-\(\frac{1}{2}\)=0

⇔(x+\(\frac{3}{4}\))2=\(\frac{17}{16}\)

\(x=\left\{{}\begin{matrix}\frac{-3+\sqrt{17}}{4}\\\frac{-3-\sqrt{17}}{4}\end{matrix}\right.\)

2.tương tự

x= \(\left\{{}\begin{matrix}\frac{-5-\sqrt{13}}{4}\\\frac{-5+\sqrt{13}}{4}\end{matrix}\right.\)

thử lại nghiệm thì chỉ có \(\frac{-3+\sqrt{17}}{4}\) và\(\frac{-5-\sqrt{13}}{4}\)thỏa mãn

⇒x=\(\frac{-3+\sqrt{17}}{4}\) và x=\(\frac{-5-\sqrt{13}}{4}\)

hơi dài vui

20 tháng 8 2019

a,\(\Leftrightarrow\left(4x-1\right)^2\left(x^2+1\right)=4\left(x^2-x+1\right)^2\)

\(\Leftrightarrow\left(16x^2-8x+1\right)\left(x^2+1\right)=4\left(x^4+x^2+1-2x^3+2x^2-2x\right)\)

\(\Leftrightarrow16x^4+17x^2-8x^3-8x+1=4x^4+12x^2+4-8x^3-8x\)

\(\Leftrightarrow12x^4+5x^2-3=0\left(1\right)\)

Dat \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow12t^2+5t-3=0\)

\(\Delta=25-4.12.\left(-3\right)=169>0\)

Suy ra PT co hai nghiem phan biet

\(t_1=\frac{1}{3};t_2=-\frac{3}{4}\)

\(x=\frac{1}{\sqrt{3}}\)

12 tháng 8 2019

Câu 1 :

Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý) 

Vậy pt vô nghiệm

Câu 2 : 

\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy x=-1

Câu 3 : 

\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)

Câu 4 : 

\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x=15\)

\(ĐKXĐ:x\ge-1;2x+y\ne0\)

Ta có:\(\sqrt{x+1}-\frac{2}{2x+y}=-1\Rightarrow3\sqrt{x+1}-\frac{6}{2x+y}=-3\left(1\right)\)

\(\sqrt{4x+4}+\frac{3}{2x+y}=5\Rightarrow2\sqrt{4\left(x+1\right)}+\frac{6}{2x+y}=10\Rightarrow4\sqrt{x+1}+\frac{6}{2x+y}=10\left(2\right)\)

Lấy (1) cộng (2) ta được:

\(\Rightarrow4\sqrt{x+1}+3\sqrt{x+1}=7\Rightarrow7\sqrt{x+1}=7\Rightarrow\sqrt{x+1}=1\Rightarrow x+1=1\Rightarrow x=0\left(TM\right)\)

Khi đó ta có:\(\Rightarrow\sqrt{0+1}-\frac{2}{2.0+y}=-1\Rightarrow1-\frac{2}{y}=-1\Rightarrow\frac{2}{y}=2\Rightarrow y=1\)

                 Vậy \(x,y\in\left\{0;1\right\}\)

6 tháng 7 2017

2. 

a,  Với m\(=1\Rightarrow x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

b. Ta có \(\Delta=b^2-4ac=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)

\(\Rightarrow\)phương trình luôn có 2 nghiệm \(x_1,x_2\)

c, Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

A=\(\frac{2.x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=\frac{2.x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2+2x_1x_2}\)

\(=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{\left(m^2+2\right)-\left(m^2-2m+1\right)}{m^2+2}\)

\(=1+\frac{-\left(m-1\right)^2}{m^2+2}\)

Ta thấy \(\frac{-\left(m-1\right)^2}{m^2+2}\le0\Rightarrow1+\frac{-\left(m-1\right)^2}{m^2+2}\le1\)

\(\Rightarrow MaxA=1\)

Dấu bằng xảy ra\(\Leftrightarrow\) \(m-1=0\Leftrightarrow m=1\)

2 tháng 6 2021

em                                                                                                                                                                                                            ko

biết

8 tháng 9 2017

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)