K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

(x2 + 7x)2 - 2(x2 + 7x) - 24 = 0

<=> (x2 + 7x)(x2 + 7x - 2) - 24 = 0 (1)

Đặt t = x2 + 7x - 1 = \(=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)

(1) trở thành (t + 1)(t - 1) - 24 = 0

<=> t2 - 1 - 24 = 0

<=> t2 - 25 = 0

<=> t2 = 25

<=> t = 5 hoặc t = -5

+) t =\(\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\) = 5

\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{73}{4}\)

\(\Leftrightarrow x=\frac{-7+\sqrt{73}}{2};x=\frac{-7-\sqrt{73}}{2}\)

+) t = \(\left(x+\frac{7}{2}\right)^2-\frac{53}{4}=-5\)

\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{33}{4}\)

\(\Leftrightarrow x=\frac{-7+\sqrt{33}}{2};x=\frac{-7-\sqrt{33}}{2}\)

Vậy ...

21 tháng 2 2018

3)

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

21 tháng 2 2018

4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy ................

23 tháng 3 2020

a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>

2x+1=0<=>x=\(-\frac{1}{2}\)

hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)

Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))

b)\(\left(x^2+4\right)\left(7x-3\right)=0\)

<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)

\(x^2=-4\) vô lí

Vậy ..........

c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)

<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)

\(x^2+x+1>0\)(dễ dàng c/m)

=>6-2x=0=>x=3

Vậy...

d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

<=>8x-4=0,x=\(\frac{1}{2}\)

hoặc \(x^2+2x+2=0\)(vô lí)

Vậy .....

6 tháng 2 2020

a) 

Đặt x^2 + x - 5 = t.

Khi đó, pt đã cho trở thành :

t ( t + 9 ) = -18

<=> t^2 + 9t + 18 = 0

<=> ( t + 3 )( t + 6 ) = 0

Giải pt trên, ta được t = -3 và t = -6 là các nghiệm của pt.

+) t = -3 => x^2 + x - 5 = -3

           <=> x^2 + x - 2 = 0

          <=> ( x + 2 )( x - 1 ) = 0

Giải pt trên, ta được x = -2 ; x = 1 là các nghiệm của pt.

+) t = -6 => x^2 + x - 5 = -6

            <=> x^2 + x + 1 = 0

           <=> ( x + 1/2 )^2 + 3/4 = 0

=> Pt trên vô nghiệm.

Vậy..........

b)

x^3 - 7x + 6 = 0

<=> ( x^3 + 3x^2 ) - ( 3x^2 + 9x ) + ( 2x + 6 ) = 0

<=> x^2 . ( x + 3 ) - 3x . ( x + 3 ) + 2( x + 3 ) = 0

<=> ( x + 3 ) ( x^2 - 3x + 2 ) = 0

<=> ( x+ 3 )( x - 2 )( x - 1 ) = 0

Giải pt trên, ta được x = -3 ; x= 2 ; x= 1 là các nghiệm của pt.

Vậy..........

c)

( 3x^2 + 10x - 8 )^2 = ( 5x^2 - 2x + 10 )^2

<=> ( 3x^2 + 10x - 8 )^2 - ( 5x^2 - 2x + 10 )^2 = 0

<=> ( 3x^2 + 10x - 8 - 5x^2 + 2x - 10 )( 3x^2 + 10x - 8 + 5x^2 - 2x + 10 ) = 0

<=> ( -2x^2 + 12x - 18 )( 8x^2 + 8x + 2 ) = 0

<=> ( x^2 - 6x + 9 )( 4x^2 + 4x + 1 ) = 0

<=> ( x - 3 )^2 . ( 2x + 1 )^2 = 0.

Giải pt trên, ta được x = 3 và x = -1/2 là các nghiệm của pt.

Vậy..........

23 tháng 1 2020

\(6x^2-7x+2=0\)

Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)

\(x^6-1=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)

Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)

23 tháng 1 2020

\(6x^2-7x+2=0\)

\(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)

\(x^6-1=0\)

\(\Leftrightarrow x^6=1\)

\(\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)

15 tháng 3 2018

a. Ta có:

\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)

\(\Leftrightarrow\left(x-3\right)^2-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

15 tháng 3 2018

Ta có:

\(x^2-7x+14=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)

Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)

=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)

=> pt vô nghiệm

2 tháng 3 2019

\(x^4-6x^3+7x^2+6x-8=0\)

\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)

\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)

Vậy S={-1;1;2;4}

Ta có: \(x^3-7x^2+15x-25=0\)

\(\Leftrightarrow\left(x^3-5x^2\right)-\left(2x^2-10x\right)+\left(5x-25\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)-2x\left(x-5\right)+5\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+5\right)=0\)(1)

Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge4>0\forall x\)

hay \(x^2-2x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x-5=0

hay x=5

Vậy: x=5