Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{2}\times x-\sqrt{50}=0\)
\(2\times x^2-50=0\)
\(2\times x^2=50\)
\(x^2=25\)
\(x=\hept{\begin{cases}-5\\5\end{cases}}\)
a/ \(\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}=35-2x\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x\left(x+7\right)}=35-2x\)
Đặt \(a=\sqrt{x}\); \(b=\sqrt{x+7}\) \(\left(a,b\ge0\right)\), ta được:
\(a+b+2ab+2a^2=35\) \(\Leftrightarrow a+2a^2+b+2ab=35\)
\(\Leftrightarrow a\left(1+2a\right)+b\left(1+2a\right)=35\)\(\Leftrightarrow\left(1+2a\right)\left(a+b\right)=35\)
Đến đây bạn chia trường hợp để giải nha
b/ \(P=\frac{1+2x}{1-\sqrt{1+2x}}-\frac{1-2x}{1-\sqrt{1-2x}}\)\(=\frac{\left(1+2x\right)\left(1+\sqrt{1+2x}\right)}{-2x}-\frac{\left(1-2x\right)\left(1+\sqrt{1-2x}\right)}{2x}\)
Tới đây bạn tự làm được k
Câu a ra đến (1+2a)(a+b)=35 rồi giải thế nào vậy bạn. Mình cảm ơn
\(\sqrt{9.\left(x-1\right)^2}-12=0\)
=> 3.(x - 1) - 12 = 0
=> 3x - 15 = 0
=> 3x = 15
=> x = 5
b) \(\sqrt{4.\left(3-x\right)}=16\) (ĐKXĐ: x ≤ 3)
\(\Rightarrow\sqrt{3-x}=8\)
=> 3 - x = 64
=> x = -61
Đề là \(\sqrt{\left(x+1\right)}+2\left(x+1\right)=x-1+\sqrt{\left(1-x\right)}+3\sqrt{1-x^2}\)?
Đk : \(\hept{\begin{cases}x-2\ge0\\x-1\ge\end{cases}}\Leftrightarrow x\ge2\left(1\right)\)
Nhẩm thấy x= 2 là nghiệm của phương trình nên ta thêm bớt để nhóm nhân tử chung là x = 2
\(\left(x-2\right)+\sqrt{x-2}=2\left(\sqrt{x-1}-1\right)\)\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-1-1\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-2\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]=0\)
- Nếu \(\sqrt{x-2}=0\Leftrightarrow x=2\)
- Nếu \(\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]=0\)vì với \(x\ge2\) thì \(\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]\ge1\)nên phương trình vô nghiệm
- vậy nghiệm của phương trình là \(x=2\)
bạn ơi, dùng kí hiệu toán học vt rõ đề ra được không bạn
mk kb vt bn ơi