K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

\(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)

Đặt \(\left\{{}\begin{matrix}x^2+1=a\\x^2-1=b\end{matrix}\right.\) \(\Leftrightarrow a-b=2\Leftrightarrow b=a-2\)

pt \(\Leftrightarrow ab+a\sqrt{a}=0\)

\(\Leftrightarrow a\left(a-2\right)+a\sqrt{a}=0\)

\(\Leftrightarrow a^2+a\sqrt{a}-2a=0\)

\(\Leftrightarrow a\left(a+\sqrt{a}-2\right)=0\)

\(\Leftrightarrow a\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x^2+1=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\varnothing\\x=0\end{matrix}\right.\)

Vậy \(x=0\) là nghiệm duy nhất của pt.

14 tháng 7 2018

a) \(\left|3x+1\right|=\left|x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)

\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)

e) \(\left|x^2-1\right|+\left|x+1\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)

\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)

\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)

⇒ vô nghiệm

20 tháng 12 2019

a/ (1−\(\sqrt{2}\))x2 −2(1+\(\sqrt{2}\))x+1+3\(\sqrt{2}\)=0

⇔ (1−\(\sqrt{2}\)) (x2 - 2x +3) = 0 (Đặt nhân tử chung)

⇔ 1- \(\sqrt{2}\) = 0 và x2 -2x +3 = 0

b) nhân 6 với \(\sqrt{2}\)+1 là ra phương trình bậc 2

AH
Akai Haruma
Giáo viên
20 tháng 8 2021

1. ĐKXĐ: $x\leq \frac{1}{2}$
PT \(\Leftrightarrow [(x^2-2)-(x-\sqrt{2})]\sqrt{1-2x}=0\)

\(\Leftrightarrow (x-\sqrt{2})(x+\sqrt{2}-1)\sqrt{1-2x}=0\)

\(\Leftrightarrow \left[\begin{matrix} x-\sqrt{2}=0\\ x+\sqrt{2}-1=0\\ \sqrt{1-2x}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\sqrt{2}\\ x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)

Kết hợp đkxđ suy ra \(\left[\begin{matrix} x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 8 2021

2. ĐKXĐ: $-1\leq x\leq 1$

Đặt $\sqrt{1+x}=a; \sqrt{1-x}=b(a,b\geq 0)$. Khi đó ta có:

$4a-\frac{a^2+b^2}{2}=\frac{3(a^2-b^2)}{2}+2b+ab=0$

$\Leftrightarrow 2a^2-b^2+ab-4a+2b=0$

$\Leftrightarrow (a+b-2)(2a-b)=0$

Xét 2 TH:

TH1: $a+b-2=0$

$\Leftrightarrow \sqrt{1-x}+\sqrt{1+x}=2$

$\Leftrightarrow 2+2\sqrt{1-x^2}=4$
$\Leftrightarrow \sqrt{1-x^2}=1$

$\Leftrightarrow x=0$ (tm)

TH2: $2a-b=0$

$\Leftrightarrow 2\sqrt{1+x}=\sqrt{1-x}$

$\Leftrightarrow 4(x+1)=1-x$

$\Leftrightarrow x=\frac{-3}{5}$ (tm)

Vậy.........

NV
26 tháng 9 2020

a/ ĐKXĐ: \(x\ge\frac{3}{4}\)

\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)

\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)

b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)

Đặt \(\sqrt{x^2+x+1}=t>0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+1}=1\)

\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

21 tháng 10 2017

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

21 tháng 10 2017

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

1 tháng 11 2017

T sợ chỉ dám liên hợp thôi, nhường cách bình phương cho 1 ng` chăm chỉ :(

\(pt\Leftrightarrow6x+3x\sqrt{9x^2+3}+4x+2+\left(4x+2\right)\sqrt{x^2+x+1}=0\)

\(\Leftrightarrow2\left(5x+1\right)+\left(3x\sqrt{9x^2+3}+\dfrac{6\sqrt{21}}{25}\right)+\left(\left(4x+2\right)\sqrt{x^2+x+1}-\dfrac{6\sqrt{21}}{25}\right)=0\)

\(\Leftrightarrow2\left(5x+1\right)+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(5x+1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+1\right)\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}=0\)

\(\Leftrightarrow\left(5x+1\right)\left(2+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}\right)=0\)

\(\Rightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)

2 tháng 11 2017

cho mik hỏi cái trong ngoặc kia nó có khác 0 không vậy