K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\)

\(\Leftrightarrow15x-9x+6=45-10x+25\)

\(\Leftrightarrow15x-9x+10x=45+25-6\)

\(\Leftrightarrow16x=64\)

\(\Leftrightarrow x=4\)

b) \(x^2-9+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\x+7=0\Leftrightarrow x=-7\end{matrix}\right.\)

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)

\(\Leftrightarrow x+4+x^2-4x+2x-8=5x-4\)

\(\Leftrightarrow x^2+x-4x+2x-5x=-4+8-4\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\Leftrightarrow x=6\end{matrix}\right.\)

12 tháng 4 2018

a) 15x - 3(3x - 2) = 45 - 5(2x - 5)

\(\Leftrightarrow\) 15x - 9x + 6 = 45 - 10x + 25

\(\Leftrightarrow\) 6x + 10x = 70 - 6

\(\Leftrightarrow\) 16x = 64

\(\Leftrightarrow\) x = 4

Vậy.......................

b) x2 - 9 + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3) + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3 + 4) = 0

\(\Leftrightarrow\) (x - 3)(x + 7) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)

Vậy........................

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\) (đk: x\(\ne\pm\)4)

\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}+\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x-4}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow\) x + 4 + x2 - 4x + 2x - 8 = 5x - 4

\(\Leftrightarrow\) x2 - x - 5x - 4 + 4 = 0

\(\Leftrightarrow\) x2 - 6x = 0

\(\Leftrightarrow\) x(x - 6) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmđk\right)\\x=6\left(tmđk\right)\end{matrix}\right.\)

Vậy...............

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

15 tháng 4 2018

a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)

\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1

b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)

\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)

\(\Leftrightarrow x< 5\)

c) \(\dfrac{-1}{2x+3}< 0\)

dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp

12 tháng 3 2018

bài 1:

b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)

<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)

=>\(x^2+4x+4=x^2+5x+4+x^2\)

<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)

<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)

vậy...............

d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

vậy............

bài 3:

g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

=>\(4x-8-2x-2=x+3\)

<=>\(x=13\)

vậy..............

mấy ý khác bạn làm tương tụ nhé

chúc bạn học tốt ^ ^

16 tháng 4 2018

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)

11 tháng 2 2018

a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)

\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)

\(\Leftrightarrow6x+6+12x-8=x-7\)

\(\Leftrightarrow6x+12x-x=-7-6+8\)

\(\Leftrightarrow17x=-5\)

\(\Leftrightarrow x=\dfrac{-5}{17}\)

Vậy .........................

b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)

\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)

\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)

\(\Leftrightarrow2x^2-x^2+x+15-21=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2-2x+3x-6=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)

Vậy \(S=\left\{2\right\}\)

d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)

Vậy .........................

P/s: các câu còn lại tương tự, bn tự giải nha

12 tháng 2 2018

làm hộ mình câu còn lại đi :))

26 tháng 5 2017

a) ĐKXĐ: \(x\ne2;4\)

\(\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}\) = \(\dfrac{16}{5}\)

<=> \(\dfrac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\) = \(\dfrac{16}{5}\)

<=> \(\dfrac{x^2-7x+12-x^2+4x-4}{\left(x-2\right)\left(x-4\right)}-\dfrac{16}{5}\) = 0

<=> \(\dfrac{5\left(-3x+8\right)}{5\left(x-2\right)\left(x-4\right)}-\dfrac{16\left(x^2-6x+8\right)}{5\left(x-2\right)\left(x-4\right)}\) = 0

=> \(-15x+40-16x^2+96x-128\) = 0

<=> \(-\left(16x^2-81x+88\right)\) = 0

<=> \(16x^2-81x+88\) = 0

<=> \(\left(16x^2-81x+\dfrac{6561}{64}\right)-\dfrac{929}{64}\) = 0

<=> \(\left(4x-\dfrac{81}{8}\right)^2\) = \(\dfrac{929}{64}\)

<=> \(\left[{}\begin{matrix}4x-\dfrac{81}{8}=\sqrt{\dfrac{929}{64}}\\4x-\dfrac{81}{8}=-\sqrt{\dfrac{929}{64}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\dfrac{81+\sqrt{929}}{32}\\x=\dfrac{81-\sqrt{929}}{32}\end{matrix}\right.\)

Vậy .......................................... ( số xấu nhỉ!)

26 tháng 5 2017

b) \(2x^2-6x+1\) = 0

<=> \(2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{7}{2}\) = 0

<=> \(2\left(x-\dfrac{3}{2}\right)^2\) = \(\dfrac{7}{2}\)

<=> \(\left(x-\dfrac{3}{2}\right)^2\) = \(\dfrac{7}{4}\)

<=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\sqrt{\dfrac{7}{4}}\\x-\dfrac{3}{2}=-\sqrt{\dfrac{7}{4}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)

Vậy .............................

c) \(3x^2+12x-66\) = 0

<=> \(3\left(x^2+4x+4\right)-78\) = 0

<=> \(3\left(x+2\right)^2\) = 78

<=> \(\left(x+2\right)^2\) = 26

<=> \(\left[{}\begin{matrix}x+2=\sqrt{26}\\x+2=-\sqrt{26}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-2+\sqrt{26}\\x=-2-\sqrt{26}\end{matrix}\right.\)

Vậy .................................

P/s: Yahoooooooooooooo.......xong rồi!

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

27 tháng 6 2018

Mk xin lỗi nha, câu c sai đề

c) (x+6)4 + (x+8)4 = 272

17 tháng 2 2019

a) \(\left(2x-1\right)^2-\left(3x+5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-3x-5\right)=0\\ \text{​​}\Leftrightarrow\left(2x-1\right)\left(-x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\-x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-6\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{1}{2};-6\right\}\)

b) \(\dfrac{x+5}{4}-\dfrac{2x-3}{3}=\dfrac{2x-1}{12}\)

\(\Leftrightarrow3\left(x+5\right)-4\left(2x-3\right)=2x-1\\ \Leftrightarrow3x+15-8x+12=2x-1\\ \Leftrightarrow-5x+27=2x-1\\ \Leftrightarrow-5x-2x=-1-27\\ \Leftrightarrow-7x=-28\\ \Leftrightarrow x=4\)

Vậy \(S=\left\{4\right\}\)

17 tháng 2 2019

\(c)\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{-4}{1-x^2}\)(ĐKXĐ: \(x\ne\pm1\))

\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}-\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \dfrac{\left(x+1\right)^2-\left(x-1\right)^2-4}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{4x-4}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{4}{x+1}=0\)

\(\Leftrightarrow4=0\)(vô lý)

Vậy .....

\(d)\dfrac{1}{x+1}+\dfrac{2x-1}{x^3+1}=\dfrac{2}{x^2-x+1}\)(ĐKXĐ: \(x\ne-1\))

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2}{x^2-x+1}=0\\ \Leftrightarrow\dfrac{x^2-x+1+2x-1-2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=0\\ \Leftrightarrow\dfrac{x^2-x+2x-2x-2}{\left(x+1\right)\left(x^2-x+1\right)}=0\\ \Leftrightarrow\dfrac{x^2-x-2}{\left(x+1\right)\left(x^2-x+1\right)}=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow x^2+x-2x-2=0\\ \Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ....