Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8 - ( 6 + x ) = 3
8 - 6 + x = 3
x + 8 - 6 = 3
x + 8 = 3 + 6
x + 8 = 9
x = 9 - 8
x = 1
a) \(3\left(x-3\right)-5\left(-x+1\right)=x+6\)
\(\Leftrightarrow3x-9+5x-5-x-6=0\)
\(\Leftrightarrow7x=20\)
\(\Rightarrow x=\frac{20}{7}\)
b) \(\left|4x-2\right|=8\Leftrightarrow\orbr{\begin{cases}4x-2=8\\4x-2=-8\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
c) \(-3\left|6x+1\right|=-12\)
\(\Leftrightarrow\left|6x+1\right|=4\Leftrightarrow\orbr{\begin{cases}6x+1=4\\6x+1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=3\\6x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{6}\end{cases}}\)
Bài giải
a, \(3\left(x-3\right)-5\left(-x+1\right)=x+6\)
\(3x-9+5x-5-x-6=0\)
\(7x-20=0\)
\(7x=20\)
\(x=\frac{20}{7}\)
b, \(\left|4x-2\right|=8\)
\(4x-2=\pm8\)
\(\Rightarrow\orbr{\begin{cases}4x-2=-8\\4x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-6\\4x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy \(x\in\left\{-3\text{ ; }2\right\}\)
c, \(-3\left|6x+1\right|=-12\)
\(\left|6x+1\right|=4\)
\(6x+1=\pm4\)
\(\Rightarrow\orbr{\begin{cases}6x+1=-4\\6x+1=4\end{cases}}\Rightarrow\orbr{\begin{cases}6x=-5\\6x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{6}\\x=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-\frac{5}{6}\text{ ; }\frac{1}{2}\right\}\)
a)
Đặt x^2 + x - 5 = t.
Khi đó, pt đã cho trở thành :
t ( t + 9 ) = -18
<=> t^2 + 9t + 18 = 0
<=> ( t + 3 )( t + 6 ) = 0
Giải pt trên, ta được t = -3 và t = -6 là các nghiệm của pt.
+) t = -3 => x^2 + x - 5 = -3
<=> x^2 + x - 2 = 0
<=> ( x + 2 )( x - 1 ) = 0
Giải pt trên, ta được x = -2 ; x = 1 là các nghiệm của pt.
+) t = -6 => x^2 + x - 5 = -6
<=> x^2 + x + 1 = 0
<=> ( x + 1/2 )^2 + 3/4 = 0
=> Pt trên vô nghiệm.
Vậy..........
b)
x^3 - 7x + 6 = 0
<=> ( x^3 + 3x^2 ) - ( 3x^2 + 9x ) + ( 2x + 6 ) = 0
<=> x^2 . ( x + 3 ) - 3x . ( x + 3 ) + 2( x + 3 ) = 0
<=> ( x + 3 ) ( x^2 - 3x + 2 ) = 0
<=> ( x+ 3 )( x - 2 )( x - 1 ) = 0
Giải pt trên, ta được x = -3 ; x= 2 ; x= 1 là các nghiệm của pt.
Vậy..........
c)
( 3x^2 + 10x - 8 )^2 = ( 5x^2 - 2x + 10 )^2
<=> ( 3x^2 + 10x - 8 )^2 - ( 5x^2 - 2x + 10 )^2 = 0
<=> ( 3x^2 + 10x - 8 - 5x^2 + 2x - 10 )( 3x^2 + 10x - 8 + 5x^2 - 2x + 10 ) = 0
<=> ( -2x^2 + 12x - 18 )( 8x^2 + 8x + 2 ) = 0
<=> ( x^2 - 6x + 9 )( 4x^2 + 4x + 1 ) = 0
<=> ( x - 3 )^2 . ( 2x + 1 )^2 = 0.
Giải pt trên, ta được x = 3 và x = -1/2 là các nghiệm của pt.
Vậy..........
Câu B đây;vừa bị lag
B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)
⇔ \(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1
⇔ \(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0
⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0
Mà \(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0
⇔ x+36=0
⇔ x=-36
Vậy tập nghiệm của phương trình đã cho là:S={-36}
câu C tương tự nhé
Câu hỏi của Nguyễn Hồng Pha - Toán lớp 8 | Học trực tuyến - Hoc24.vn
Tham khảo bạn nhé !
\(\Leftrightarrow\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{x^3+8+x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
hay \(x\in\left\{0;1\right\}\)
\(\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)
<=>\(\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)
<=>\(\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\)
<=>\(\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{6}\right)=0\)
vì 1/9+1/8-1/7-1/6 khác 0
=>x+10=0<=>x=-10
vậy..............
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-x-6x+6=0\)
\(\Leftrightarrow(x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-3x+2x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-2;1;3\right\}\)
+) Khi \(6+x\ge0\Leftrightarrow x\ge-6\)
Ta có : \(\left|6+x\right|\)\(=6+x\)
Phương trình : \(8-\left(6+x\right)\)\(=3\)
\(\Leftrightarrow8-6-x=3\)
\(\Leftrightarrow x=-\left(3-8+6\right)\)
\(\Leftrightarrow x=-1\)(thỏa mãn đk \(x\ge-6\))
+) Khi \(6+x< 0\Leftrightarrow x< -6\)\(\)
Ta có : \(\left|6+x\right|=-\left(6+x\right)\)
\(=-6-x\)
Phương trình : \(8-\left(-6-x\right)=3\)
\(\Leftrightarrow8+6+x=3\)
\(\Leftrightarrow x=3-8-6\)
\(\Leftrightarrow x=-11\)(thỏa mãn đk \(x< -6\))
Vậy tập nghiệm của phương trình là \(S=\left\{-1;-11\right\}\)
Chúc bạn học tốt
8-|6+x|=3 ĐK: x∈R
⇔|6+x|=3+8
⇔|6+x|=11
⇔\(\left\{{}\begin{matrix}6+x=11\\6+x=-11\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=11-6\\x=\left(-11\right)-6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=5\left(t/m\right)\\x=-17\left(t/m\right)\end{matrix}\right.\)
Vậy PT có tập nghiệm S=\(\left\{5,-17\right\}\)