K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>2x+1=27

=>2x=26

=>x=13

b: =>\(\sqrt[3]{x+5}=x+5\)

=>x+5=(x+5)^3

=>(x+5)(x+4)(x+6)=0

=>x=-5;x=-4;x=-6

c: =>2-3x=-8

=>3x=10

=>x=10/3

d: =>\(\sqrt[3]{x-1}=x-1\)

=>(x-1)^3=(x-1)

=>x(x-1)(x-2)=0

=>x=0;x=1;x=2

22 tháng 9 2019

Giải PT

a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)

\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(12\sqrt{x} = 3\)

\(\Leftrightarrow\) \(\sqrt{x} = 4 \)

\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)

\(\Leftrightarrow\) \(x=16\)

b) \(\sqrt{x^2-2x-1} - 3 =0\)

\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)

\(\Leftrightarrow\) \(|x-1|=3\)

* \(x-1=3\)

\(\Leftrightarrow\) \(x=4\)

* \(-x-1=3\)

\(\Leftrightarrow\) \(-x=4\)

\(\Leftrightarrow\) \(x=-4\)

c) \(\sqrt{4x^2+4x+1} - x = 3\)

<=> \(\sqrt{(2x+1)^2} = 3+x\)

<=> \(|2x+1|=3+x\)

* \(2x+1=3+x\)

<=> \(2x-x=3-1\)

<=> \(x=2\)

* \(-2x+1=3+x\)

<=> \(-2x-x = 3-1\)

<=> \(-3x=2\)

<=> \(x=\dfrac{-2}{3}\)

d) \(\sqrt{x-1} = x-3\)

<=> \(\sqrt{(x-1)^2} = (x-3)^2\)

<=> \(|x-1| = x^2-2.x.3+3^2\)

<=> \(|x-1| = x-6x+9\)

<=> \(|x-1| = -5x+9\)

* \(x-1= -5x+9\)

<=> \(x+5x = 9+1\)

<=> \(6x=10\)

<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)

* \(-x-1 = -5x+9\)

<=> \(-x+5x = 9+1\)

<=> \(4x = 10\)

<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)

22 tháng 9 2019

mình nghĩ câu b \(\left(x-1\right)^2\)luôn lớn hơn 0 nên chắc không cần chia ra hai trường hợp nhỉ ?

11 tháng 2 2020

A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)

\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)

B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)

\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)

\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)

C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)

Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)

\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)

D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)

\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)

11 tháng 2 2020

E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)

\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)

F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)

△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)

\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

25 tháng 10 2018

Bài 1

a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a

b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3

Bài 2

a) √2x-3 = 7

⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26

c) √16x - √9x = 2

⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4

Bài 3

a) √(2-√5)2 = l 2-√5 l = √5-2

b) (a - 3)2 + (a - 9)

= a2 - 6a + 9 + a - 9 = a2 - 5a

c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)

=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

=\(\dfrac{-3\sqrt{x}+9}{x-9}\)

25 tháng 10 2018

mình cảm ơn bạn nhiều lắm

24 tháng 9 2018

b)\(\sqrt{25x^2}=19\)

\(\Leftrightarrow5x=19\)

\(\Leftrightarrow x=\dfrac{19}{5}\)

24 tháng 9 2018

c)\(\sqrt{x-7}+3=0\)

\(\Leftrightarrow\sqrt{x-7}=-3\)

\(\Leftrightarrow x-7=9\)

\(\Leftrightarrow x=16\)

Bài 1:

a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)

b) Ta có: \(x^2+2x+1\)

\(=\left(x+1\right)^2\)

\(\left(x+1\right)^2\ge0\forall x\)

nên \(x^2+2x+1\ge0\forall x\)

Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x

c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)

\(\Leftrightarrow x\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)

Bài 3:

a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)

\(=\left|3-\sqrt{10}\right|\)

\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))

b) Ta có: \(\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))

c) Ta có: \(3x-\sqrt{x^2-2x+1}\)

\(=3x-\sqrt{\left(x-1\right)^2}\)

\(=3x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)