K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

ĐK:\(\left\{{}\begin{matrix}x\ge2\\y\ge3\\z\ge5\end{matrix}\right.\)

\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\Leftrightarrow x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\Leftrightarrow x-2-2\sqrt{x-2}+1+y-3-4\sqrt{y-3}+4+z-5-6\sqrt{z-5}+9=0\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)(tm)

Vậy (x;y;z)=(3;7;14)

21 tháng 12 2018

ĐKXĐ:\(\left\{{}\begin{matrix}x\ge2\\y\ge3\\z\ge5\end{matrix}\right.\)
Ta có x+y+z+4=\(2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(\Leftrightarrow\)\(x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\)
\(\Leftrightarrow\)\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5+6\sqrt{z-5}+9\right)=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
mà 3 biểu thức trên đều \(\ge\)0 nên để =0 thì
\(\)\(\sqrt{x-2}=1;\sqrt{y-3}=2;\sqrt{z-5=3}\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)

3 tháng 12 2017

5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)

TT=>VT2>=VP2

6.\(1+\sqrt{y-1}\ge1\)

\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)

=>VT1>=VP1

10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)

3 tháng 12 2017

chi. cậu trả lời j vào câu hỏi của tớ vậy???

1 tháng 10 2019

câu 1 sai đề

1 tháng 10 2019

\(\sqrt{x}+1chứkophải\sqrt{x+1}\)

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

Bài 2:
ĐK: $x\geq 3; y\geq 4; z\geq 6$

Áp dụng BĐT AM-GM ta có:

$\sqrt{x-3}=\sqrt{1(x-3)}\leq \frac{1+(x-3)}{2}$

$\sqrt{y-4}=\sqrt{1(y-4)}\leq \frac{1+(y-4)}{2}$
$\sqrt{z-6}=\sqrt{1(z-6)}\leq \frac{1+(z-6)}{2}$

Cộng theo vế các BĐT trên thu được:

$\sqrt{x-3}+\sqrt{y-4}+\sqrt{z-6}\leq \frac{x+y+z}{2}-5$

Dấu "=" xảy ra khi $x-3=y-4=z-6=1$

$\Leftrightarrow x=4; y=5; z=7$

Vậy.........

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

Bài 1:

ĐK để $\sqrt{x^2-9}$ tồn tại là $x\geq 3$ hoặc $x\leq -3$

ĐK để $\sqrt{3-x}$ tồn tại là $x\leq 3$

$\Rightarrow $ ĐKXĐ: $x=3$ hoặc $x\leq -3$

PT $\Leftrightarrow \sqrt{(x-3)(x+3)}-\sqrt{3-x}=0$

$\Leftrightarrow \sqrt{3-x}(\sqrt{-x-3}-1)=0$

$\Rightarrow \sqrt{3-x}=0$ hoặc $\sqrt{-x-3}=1$

$\Rightarrow x=3$ hoặc $x=-4$ (thỏa mãn)