Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\sqrt{\left(2x-1\right)^2}=6\)
\(\Rightarrow2x-1=\hept{\begin{cases}6\\-6\end{cases}}\)
\(\Rightarrow2x=\hept{\begin{cases}7\\-5\end{cases}}\)
\(\Rightarrow x=\hept{\begin{cases}\frac{7}{2}\\-\frac{5}{2}\end{cases}}\)
\(2;\sqrt{x^2+4x+4}=5\)
\(\Rightarrow\sqrt{x^2+2.2x+2^2}=5\)
\(\Rightarrow\sqrt{\left(x+2\right)^2}=5\)
\(\Rightarrow\hept{\begin{cases}x+2=5\\x+2=-5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=-7\end{cases}}\)
Làm tương tự
1)ĐK : ........
đặt \(\sqrt{x+5}=a;\sqrt{x+2=b}\) ta có \(a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
=> \(\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(1+ab\right)=0\)
=> \(\left(a-b\right)\left(a+b-ab-1\right)=0\)
=> \(\left(a-b\right)\left(a-1\right)\left(1-b\right)=0\)
đến đây bạn tự giải nha
2) xét
VT = \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{1}+\sqrt{9}=4\)
Dấu = xảy ra khi x =3
\(-5-x^2+6x=-\left(x-3\right)^2+4\le4\)
Dấu bằng xảy ra tại x = 3
=> VT = VP = 4 tại x = 3
Vậy x = 3 là n* duy nhất
3xbình =(x+2) bình => 3x bình = x bìn+ 4 x +4 => 2x bình - 4x -4 =0 => 2. (x bình - 2x -1)=0
bạn ngô hoài thanh nếu khai căn thì phải lấy trị tuyệt đối chứ
1) \(\sqrt{4x^2+4x+1}=3x-5\)
<=> \(\sqrt{\left(2x\right)^2+2.2x.1+1}=3x-5\)
<=> \(\sqrt{\left(2x-1\right)^2}=3x-5\)
<=> \(2x-1=3x-5\)
<=> x=6.
2) \(\sqrt{9-6x+x^2}=7\)
<=> \(\sqrt{\left(3-x\right)^2}=7\)
<=> \(3-x=7\)
<=> x=-4.
3) \(\sqrt{x-7}=8\)
<=> \(x-7=8^2\)
<=> \(x-7=64\)
<=> x=57.