Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải các pt sau:
a) (x+4)(2x-3)=0
TH1: x+4=0 => x=-4
TH2 : 2x-3=0 => 2x=3 =>x=3/2
\(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{x}{2018}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x}{4070306}+\frac{2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x+2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1+1=\frac{1-x}{4070306}+1\)
\(\Rightarrow\frac{2-x}{2016}=\frac{1-x+4070306}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}=\frac{4070307-x}{4070306}\)
\(\Rightarrow4070306.\left(2-x\right)=2016.\left(4070307-x\right)\)
\(\Rightarrow8140612-4070306x=8205738912-2016x\)
\(\Rightarrow-4070306x+2016x=8205738912-8140612\)
\(\Rightarrow-4068290x=8197598300\)
\(\Rightarrow x=4,95\)
Vậy x=4,95
Chúc bn học tốt
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)
\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)
Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy...
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
Tính tổng
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2017)(x+2018)
Giải:\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+....+\frac{1}{\left(x+2017\right)\left(x+2018\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+..........+\frac{1}{x+2017}-\frac{1}{x+2018}\)
\(=\frac{1}{x}-\frac{1}{x+2018}\)
Vậy........................................
\(\frac{x+1}{2018}-\frac{x+2}{2017}=\frac{x+3}{2016}+1\)
\(\Leftrightarrow\frac{x+1}{2018}+1-\left(\frac{x+2}{2017}+1\right)=\frac{x+3}{2016}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}-\frac{x+2019}{2017}=\frac{x+2019}{2016}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
Có: \(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\ne0\)
\(\Leftrightarrow x+2019=0\Leftrightarrow x=-2019\)
Vậy...