K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^3-7x^2+15x-25=0\)

\(\Leftrightarrow\left(x^3-5x^2\right)-\left(2x^2-10x\right)+\left(5x-25\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)-2x\left(x-5\right)+5\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+5\right)=0\)(1)

Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge4>0\forall x\)

hay \(x^2-2x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x-5=0

hay x=5

Vậy: x=5

4 tháng 2 2018

              \(\left(x^2+7x+12\right)\left(x^2-15x+56\right)=180\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(x+4\right)\left(x-7\right)\left(x-8\right)-180=0\)

\(\Leftrightarrow\)\(\left(x^2-4x-21\right)\left(x^2-4x-32\right)-180=0\)

Đặt     \(x^2-4x-21=t\)  ta có:

                         \(t\left(t-11\right)-180=0\)

           \(\Leftrightarrow\)\(t^2-11t-180=0\)

           \(\Leftrightarrow\)\(t^2-20t+9t-180=0\)

           \(\Leftrightarrow\)\(\left(t-20\right)\left(t+9\right)=0\)

           \(\Leftrightarrow\)\(\orbr{\begin{cases}t-20=0\\t+9=0\end{cases}}\)

  P/S:đến đây bn thay trở lại rồi tìm   x   nhé! chúc bn hok tốt

7 tháng 5 2019

\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x^2+15x=0\)

\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x^2+2-5x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x^2-5x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=...\end{cases}}}\)

Dùng máy tính bấm nốt nghiệm phương trình 2 nhé

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

15 tháng 3 2018

a. Ta có:

\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)

\(\Leftrightarrow\left(x-3\right)^2-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

15 tháng 3 2018

Ta có:

\(x^2-7x+14=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)

Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)

=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)

=> pt vô nghiệm

16 tháng 2 2016

cái này bạn cố gắng phân tích ra đi

16 tháng 2 2016

6x4 - x- 7x+ x + 1 = 0

=> (x + 1)(3x + 1)(x - 1)(2x - 1) = 0

=> x + 1 = 0 => x = -1

hoặc 3x + 1 = 0 => x = -1/3

hoặc x - 1 = 0 => x = 1

hoặc 2x - 1 = 0 => x = 1/2

Vậy x = -1, x = -1/3, x = 1 , x = 1/2

a) 5x2 -8x +3 -0

=> 5x2 -5x -3x +3 =0

=>5x(x-1) -3(x-1) =0

=> (x-1)(5x -3) =0

=>x-1=0 hoặc 5x-3=0

+ nếu x-1=0 thì x =1

+nếu 5x-3=0 thì 5x=3=>x=3/5

b)x3 -7x +6 =0

=>x3 -x-6x+6 =0

=>x(x2 -1)-6(x-1) =0

=>x(x-1)(x+1) -6(x-1) =0

=>(x-1)[x(x+1)-6]=0

=>x-1=0 hoặc x(x+1)-6 =0

+ nếu x -1=0 thì x=1

+nếu  x(x+1)-6 =0 thì x(x+1) =6 => x=2

5 tháng 7 2017

a.5x2 -8x + 3=0

<=>5x2 -5x -3x +3=0

<=>(5x2-5x)(3x-3)=0

<=>5x(x-1) - 3(x-1)=0

<=>(x-1)(5x-3)=0

<=>\(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

b)x3-7x+6=0

<=>x3-x-6x+6=0

<=>(x3-x)-(6x-6)=0

<=>x(x2-1)-6(x-1)=0

<=>x(x+1)(x-1)-6(x-1)=0

<=>(x-1)[x(x+1)-6]=0

<=>\(\orbr{\begin{cases}x-1=0\\x\left(x+1\right)-6=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)

9 tháng 8 2015

a)4x2+8x+3=0

<=>(4x2+2x)+(6x+3)=0

<=>2x(2x+1)+3(2x+1)=0

<=>(2x+1)(2x+3)=0

<=>2x+1=0 hoặc 2x+3=0

<=>x=-1/2 hoặc x=-3/2

b)(2x+3)2=(x-6)2

<=>(2x+3)2-(x-6)2=0

<=>(2x-3-x+6)(2x+3+x-6)=0

<=>(x+3)(3x-3)=0

<=>x+3=0 hoặc 3x-3=0

<=>x=-3 hoặc x=1

c)x3-7x2+15x-9=0

<=>(x3-6x2+9x)-(x2-6x+9)=0

<=>x(x-3)2-(x-3)2=0

<=>(x-3)2(x-1)=0

<=>(x-3)2=0 hoặc x-1=0

<=>x=3 hoặc x=1

23 tháng 8 2020

a) \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x-3\right)=0\)

=> \(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

Vậy tập nghiệm PT \(S=\left\{-3;-1;2;3\right\}\)

b) \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x+1\right)\left(x+7\right)=0\)

=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+7=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)

Vậy tập nghiệm PT \(S=\left\{-7;-1;3;4\right\}\)

23 tháng 8 2020

a, \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1;-3\\x=3;2\end{cases}}\)

b, \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+1\right)\left(x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4;3\\x=-1;-7\end{cases}}\)

5 tháng 3 2018

a) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy .................

b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy ...............

c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

P/s: tới đây bn tự giải tiếp nha