Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét VT của (1):
\(3VT\)
\(=\sqrt{5x^2+2xy+2y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{2x^2+2xy+5y^2}.\sqrt{2^2+2^2+1^2}\)
\(=\sqrt{\left(x+y\right)^2+4x^2+y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{\left(x+y\right)^2+x^2+4y^2}.\sqrt{2^2+2^2+1^2}\)
\(\ge\left[2\left(x+y\right)+4x+y\right]+\left[2\left(x+y\right)+x+4y\right]=9x+9y\)
\(\Rightarrow VT\ge3x+3y=VT\)
Đẳng thức xảy ra \(\Leftrightarrow...\Leftrightarrow x=y\)
Sau đó thay \(y=x\) vào pt (2) ta được:
\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)
\(\Leftrightarrow\left(2x^2-\sqrt{3x+1}\right)+\left(x-5-2\sqrt[3]{19x+8}\right)=0\)
\(\Leftrightarrow\dfrac{4x^2-3x-1}{2x^2+\sqrt{3x+1}}+\dfrac{\left(x+5\right)^3-8\left(19x+8\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4x+1\right)}{2x^2+\sqrt{3x+1}}+\dfrac{ \left(x-1\right)\left(x^2+16x-61\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left[\dfrac{4x+1}{2x^2+\sqrt{3x+1}}+\dfrac{x^2+16x-61}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}\right]=0\)
\(\Leftrightarrow x=1\Rightarrow y=1\)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)
Lấy (1). 2 - (2) ta được:
\(2x^3+y^3-x^2y-2xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)
Đến đây dễ rồi nhé ^^
2/ Ta viết lại pt thứ 2 của hệ:
\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)
\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)
\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)
Bạn làm tiếp nhé!
3/ Ta viết lại pt thứ nhất của hệ
\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)
\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)
Bạn làm tiếp được chứ?
4/ Viết lại pt thứ 2 của hệ
\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
mấy bài này là ở lớp 9 học kì 2 dùng cộng đại số là nhanh nhất hoặc bấm máy tính
Lấy 3 lần pt trên trừ pt dưới:
\(4x^2+4xy+y^2-6x-3y+2=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2-\left(2x+y-1\right)=0\)
\(\Leftrightarrow\left(2x+y-1\right)\left(2x+y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=1-2x\\y=2-2x\end{matrix}\right.\)
Thay vào 1 trong 2 pt ban đầu là xong