Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2cosx-sinx-4sin^2x.cosx+2sin^3x=sin^3x+cos^3x\)
\(\Leftrightarrow sin^3x-cos^3x-4sin^2x.cosx+2cosx-sinx=0\)
- Với \(\left\{{}\begin{matrix}cosx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\) là nghiệm của pt
- Với \(cosx\ne0\) chia 2 vế cho \(cos^3x\)
\(tan^3x-1-4tan^2x+2\left(1+tan^2x\right)-tanx\left(1+tan^2x\right)=0\)
\(\Leftrightarrow-2tan^2x-tanx+3=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{3}{2}\right)+k\pi\end{matrix}\right.\)
Các bước biến đổi. Bạn tự tìm kết quả nhé!
1) \(\left(\sin x-\cos x\right)\left(\cos^2x+\cos x.\sin x+\sin^2x\right)+\cos^2x-\sin^2x=0\)
<=> \(\left(\sin x-\cos x\right)\left(1+\cos x.\sin x\right)+\left(\cos x-\sin x\right)\left(\cos x+\sin x\right)=0\)
<=> \(\left(\sin x-\cos x\right)\left(\cos x+1\right)\left(\sin x+1\right)=0\)
2) \(\left(\sin^3x-2\sin^5x\right)-\left(2\cos^5x-\cos^3x\right)=0\)
<=> \(\sin^3x\left(1-2\sin^2x\right)-\cos^3x\left(2\cos^2x-1\right)=0\)
<=> \(\sin^3x.\cos2x-\cos^3x.\cos2x=0\)
<=> \(\cos2x\left(\sin^3x-\cos^3x\right)=0\)
3) ĐK: x\(\ne\frac{\pi}{2}+k\pi\)
\(\cos x\left(3.\tan x+2\right)-\left(3\tan x+2\right)=0\)
<=> \(\left(\cos x-1\right)\left(3.\tan x+2\right)=0\)
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
a.
\(1-sin^2x+1-2sin^2x+sinx+2=0\)
\(\Leftrightarrow-3sin^2x+sinx+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
b. ĐKXĐ; ...
\(5tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow5tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)
e.
Ko rõ vế phải
f.
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
d.
\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)
\(\Leftrightarrow sin^2x-cos^2x=0\)
\(\Leftrightarrow-cos2x=0\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
e. Đề thiếu
f.
\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)
\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)
\(\Leftrightarrow sin2x=cosx\)
\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
b.
\(\Leftrightarrow sin2x=1\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
c.
\(\Leftrightarrow2sin2x.cos2x=-1\)
\(\Leftrightarrow sin4x=-1\)
\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)